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Abstract: This work was conducted in order to validate a pre-treatment quantitative
ultrasound (QUS) and texture derivative analyses-based prediction model proposed in our
previous study to identify responders and non-responders to neoadjuvant chemotherapy
in patients with breast cancer. The validation cohort consisted of 56 breast cancer patients
diagnosed between the years 2018 and 2021. Among all patients, 53 were treated with
neoadjuvant chemotherapy and three had unplanned changes in their chemotherapy cycles.
Radio Frequency (RF) data were collected volumetrically prior to the start of chemotherapy.
In addition to tumour region (core), a 5 mm tumour-margin was also chosen for parameters
estimation. The prediction model, which was developed previously based on quantitative
ultrasound, texture derivative, and tumour molecular subtypes, was used to identify
responders and non-responders. The actual response, which was determined by clinical
and pathological assessment after lumpectomy or mastectomy, was then compared to
the predicted response. The sensitivity, specificity, positive predictive value, negative
predictive value, and F1 score for determining chemotherapy response of all patients in
the validation cohort were 94%, 67%, 96%, 57%, and 95%, respectively. Removing patients
who had unplanned changes in their chemotherapy resulted in a sensitivity, specificity,
positive predictive value, negative predictive value, and F1 score of all patients in the
validation cohort of 94%, 100%, 100%, 50%, and 97%, respectively. Explanations for the
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misclassified cases included unplanned modifications made to the type of chemotherapy
during treatment, inherent limitations of the predictive model, presence of DCIS in tumour
structure, and an ill-defined tumour border in a minority of cases. Validation of a model
was conducted in an independent cohort of patient for the first time to predict the tumour
response to neoadjuvant chemotherapy using quantitative ultrasound, texture derivate,
and molecular features in patients with breast cancer. Further research is needed to improve
the positive predictive value and evaluate whether the treatment outcome can be improved
in predicted non-responders by switching to other treatment options.

Keywords: radiomics; machine learning; quantitative ultrasound

1. Introduction
Neoadjuvant chemotherapy is commonly used in locally advanced breast cancer and

selected patients with human epidermal growth factor receptor 2 (HER2) overexpressed
and triple negative breast cancer [1]. The response rate to neoadjuvant chemotherapy
ranges from 60 to 90% [2]. Patients who had tumour progression during neoadjuvant
chemotherapy may benefit from either neoadjuvant radiotherapy or proceeding directly
to surgery if the tumour is still operable [3]. Addition of a targeted therapy such as
pertuzumab/trastuzumab or immunotherapy such as pembrolizumab to chemotherapy
can also increase the response rate in HER2 overexpressed and triple negative breast cancer,
respectively [4,5]. In light of the availability of these alternate management strategies, early
identification of patients with predicted poor response to chemotherapy may improve
outcome by allowing an early change in treatment.

Ultrasound has been used for several years for both diagnostic and therapeutic pur-
poses. It is highly sensitive to the variations in micro-structural properties of tissues at
various size scales. Several studies have utilized texture features of ultrasound B-mode
image for tissue characterization application [6–8]. In addition to the B-mode image,
quantitative ultrasound parameters extracted from RF data have been used for tissue char-
acterization, breast lesion assessment, and monitoring tumour response early and during
the course of treatment [9–17]. In RF-mode imaging, tissue properties are interpreted from
variations in the RF-spectrum, whereas standard B-mode images are derived from the
envelope of RF signals, utilizing only a fraction of the information available in the RF signal.
QUS methods provide more detailed information about tissue properties at a cellular level
through spectral analysis of the RF signal based on fundamental acoustic attributes of
ultrasound backscatter.

Several studies have investigated the utilization of the envelop statistics of raw RF
data including Rayleigh Nakagami, K distribution, Kolmogorov–Smirnov statistics, and
the symmetrical Kullback–Leibler in tissue characterization applications. These studies
have reported an AUC of 0.92 [9] for breast lesion characterization and AUC values of
0.84 and 0.9 for detecting breast cancer response to NAC after the first and third doses of
drugs, respectively [13]. Several studies have investigated deep learning approaches for
tissue characterization and treatment response prediction using raw RF ultrasound data or
conventional ultrasound images. These studies reported AUC values ranging from 0.81 to
0.93 for predicting breast cancer treatment response during treatment, despite the limited
cohort size [18–21]. Recently, texture feature from ultrasound backscatter parametric images
has been demonstrated for the early detection of breast cancer treatment response, with an
AUC of 0.81–0.94 [17].
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In our previous study, several QUS parameters including mid-band fit, (MBF), spec-
tral slope (SS), 0 MHz intercept, average scatterer diameter (ASD), and average acoustic
concentration (AAC) extracted from tumour ultrasound RF data were investigated for eval-
uating tumour response to treatment early after starting NAC. These parameters showed a
significant correlation with tumour response [22]. QUS parameters are related to several
tissue properties such as scatterer size, scatterer orientation, scatterer concentration, and
their elastic properties [23,24]. Combining QUS parameters with grey-level co-occurrence
matrix (GLCM)-based texture parameters extracted from QUS parametric maps improved
tumour response prediction with an accuracy of 78%, 90%, and 92% at weeks 1, 4, and 8
after the start of treatment, respectively [22].

Recently, models combining quantitative ultrasound, GLCM-based texture and texture
derivative techniques were investigated to predict the tumour response to neoadjuvant
chemotherapy before starting treatment in 100 breast cancer patients [25]. Based on these
parameters, three machine learning algorithms were developed using linear discriminant, k-
nearest-neighbours, and support vector machine. The best performance was obtained using
k-nearest neighbours, with sensitivity, specificity, and accuracy of predicting treatment
response at 87%, 81%, and 82%, respectively.

Several studies have demonstrated significant correlation between breast cancer molec-
ular features and their pathological response to chemotherapy treatment [4,26–28]. In our
most recent study, we investigated the performance of the pre-treatment breast tumour
response prediction by combining molecular features with quantitative ultrasound, tu-
mour core-margin, texture, and texture derivative analysis techniques in 208 breast cancer
patients [29]. Two standard classification algorithms using KNN and a support vector
machines-radial basis function (SVM-RBF) were evaluated. The best classification per-
formance was obtained using an SVM-RBF classifier with a combination of QUS texture
derivative from a tumour core and margin and molecular parameters with a sensitivity,
specificity, and accuracy of 79%, 86%, and 85%, respectively. The aim of this study was to
validate that previously developed QUS-Texture-derivate analyses based SVM-RBF model
in a separate cohort of patients who received neoadjuvant chemotherapy for breast cancer.
Such validation is needed to evaluate the performance of a predictive model [29] with
regard to a defined target population or clinical setting, before it can be used in clinical
practice [30].

2. Material and Methods
2.1. Developmental Cohort

Development of the QUS and texture derivate-based prediction model was performed
on 100 patients with locally advanced breast cancer patients who received neoadjuvant
chemotherapy [25]. Locally advanced breast cancer patient data were included from
patients with histologically proven adenocarcinoma of the breast, clinical stage T3-T4 or
N2-3 (AJCC 8th edition) [31]. Response assessment was carried out on the basis of the
clinical/pathological tumour response determined at the end of their neoadjuvant treatment
and surgery if it was performed [22]. Response classification included both complete or
partial response and was defined as the disappearance of all target lesions or at least a 30%
decrease in the diameter of the target lesions (RECIST criteria), based on pre-treatment
measurement via magnetic resonance imaging of breast and the pathological examination
following surgery [32]. Non-response was defined as less than a 30% decrease in tumour
size and incorporated both stable disease and progressive disease. If no malignant cells
were identified from the site of tumour after surgery, this would be classified as complete
response. The QUS, texture, and texture derivative parameters were estimated from the
tumour core region from the ultrasound RF data acquired prior to the treatment. Three



J. Imaging 2025, 11, 109 4 of 16

classification algorithms using standard classifiers such as Fisher’s linear discriminant, k-
nearest neighbours, and a radial-basis-function support vector machine were investigated.
The best classification performance was obtained with the k-nearest neighbour classifier,
with a sensitivity, specificity, and accuracy of 87%, 81%, and 82%, respectively.

In order to improve the accuracy of the prediction model, the developmental cohort
was expanded to 208 patients and additional features such as texture and texture-derived
features from the tumour core and 5 mm margin, and a tumour molecular subtype were
utilized [29]. In the updated developmental cohort, 59% of patients received doxorubicin,
cyclophosphamide followed by paclitaxel, while 28% of patients received 5-fluouracil,
epirubicin, and cyclophosphamide followed by docetaxel. Thirty-one percent of patients
received trastuzumab in the neoadjuvant setting (Supplementary Table S3). A total of
10 optimal features including QUS texture derivative parameters from the tumour core
and margin regions, and tumour molecular subtypes were used in the model, which
was designed to predict the response after the entire course of neoadjuvant chemother-
apy (Supplementary Table S2). Figure 1 shows flow charts of the developmental and
validation cohort.
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Figure 1. Flow charts of the developmental and validation cohort. AC-T = doxorubicin and cy-
clophosphamide, followed by paclitaxel. FEC-D = 5-Fluouracil, epirubicin, and cyclophosphamide,
followed by docetaxel.

This study was performed in accordance with appropriate guidelines of the Sun-
nybrook Research Ethics Board at Sunnybrook Health Sciences Centre (SHSC), Toronto,
Canada. All experimental protocols were reviewed and approved by the Sunnybrook
Research Institute Research Ethics Board before commencing the study. Informed consent
for participation was obtained from all subjects involved in the study.

2.2. Ultrasound Data Collection

Quantitative ultrasound data collection was performed by sonographers experienced
in breast imaging using a Sonix RP clinical system (Ultrasonix, Vancouver, BC, Canada) with
an L14-5/60 linear transducer (central frequency 6.5 MHz, bandwidth range 3.0–8.5 MHz).
The sonographer defined the tumour region of interest for QUS, texture, and texture
derivative estimation from the tumour core and 5 mm tumour-margin regions. In our
previous study, tumour-margin analysis of QUS parametric images acquired from locally
advanced breast cancer patients was investigated for the prediction of tumour response
to neoadjuvant chemotherapy before the start of treatment, based on the hypothesis that
the margin may account for the presence of microscopic infiltration from the primary
tumour into the surrounding normal tissue [33]. The result demonstrated that, in addition
to tumour core, QUS analysis of a 5 mm tumour surrounding region improved tumour
response prediction performance.
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This delineation of region of interest was verified by an expert breast radiologist and
the principal investigator. Tumour size was defined as the maximal dimension of the
tumour by ultrasound. Any disagreement was resolved by discussion and consensus.
Tumours were volumetrically scanned and frames nominally 0.5 cm apart from each other
were selected for analysis. If the whole tumour was too large to be included entirely as the
region of interest, we selected a region most representative of the entire tumour by imaging
an area where the signal was similar to the majority of the tumour. For larger tumours,
wherever possible, we altered the imaging magnification or repositioned the transducer to
include the shorter tumour axis in cross section, thereby covering the longer axis through
volumetric data acquisition.

2.3. Quantitative Ultrasound Parameters

Details of the quantitative ultrasound, texture, and texture derivative parameter
estimation were explained in previous work [29]. The spectral parameters including
the mid-band fit (MBF), spectral slope (SS), and spectral intercept (SI) were calculated
using linear regression analysis of normalized backscatter power spectrum obtained from
tumour RF data. The average scatterer diameter (ASD) and average acoustic concentration
(AAC) were derived from the backscatter coefficient by comparing measure data with a
theoretically derived backscatter coefficient. Finally, the quantitative ultrasound parametric
maps, including MBF, SS, SI, ASD, and AAC were constructed from the tumour core and
5 mm tumour surrounding regions (margin) using a sliding window analysis technique.
The mean values of QUS parameters were calculated from both tumour core and margin
regions. Two core-to-margin related parameters including core-to-margin ration and
core-to-margin contrast ratio were calculated from the tumour core and 5 mm margin
regions in QUS parametric maps. Four texture features including contrast, correlation,
homogeneity, and energy were extracted from QUS maps using a grey-level co-occurrence
matrix (GLCM)-based texture analysis method. Finally, four texture maps were created
from each QUS parametric images by the GLCM method using a sliding window analysis.
A second pass GLCM-based texture analysis was performed on texture maps, resulting
in texture derivative features. A total of 201 features (attenuation, mean QUS, texture,
core-to-margin, and texture derivative parameters) were extracted from tumour ultrasound
RF data (Supplementary Figure S1 and Table S1). Representative ultrasound B-mode, QUS,
and QUS texture images from both tumour core and 5 mm margin regions corresponding
to responding and non-responding patients, acquired prior to neoadjuvant chemotherapy,
are shown in Figure 2.

2.4. Statistical Analysis

The sensitivity, specificity, positive predictive value (PPV) and negative predictive
value (NPV), and F1 score were calculated in the validation cohort by comparing the
predicted response to the clinical/pathological response. Sensitivity was defined as the
proportion of responders who were correctly predicted to be responders. Specificity was
the proportion of non-responders who were correctly predicted to be non-responders. PPV
was calculated as the proportion of patients who were responders, among patients who
were predicted to be responders. NPV was defined as the proportion of patients who
were non-responders after neoadjuvant chemotherapy, among patients who were predicted
to be non-responders. F1 score, which is the harmonic mean of precision and recall, is
used to evaluate the performance of the classification model particularly when the data
set are imbalanced. Statistical analysis was conducted with IBM SPSS version 22 (IBM
Corporation, Armonk, NY, USA).
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Figure 2. Quantitative ultrasound and texture images of response group. Representative B-mode and
parametric images with the tumour core region (region within inner dotted white line) and margin
region (region between inner and outer dotted white lines), the regions of responder (Patient A and B)
and non-responder (Patient C and D). The white scale bar in ultrasound image represents 5 mm. The
colour bar represents the scale for the MBF parameter of −9.6 to 35.9 dB, for the AAC parameter of
20.4 to 179.6 dB/cm3, for the ASD parameter of 85 to 198 µm, for the MBF-CON texture parameter of
0 to 1, for the SI-COR texture parameter of −0.48 to 1, and for the ASD-ENE texture parameter of
0 to 1. MBF: mid-band fit; AAC: average acoustic concentration; ASD: average scatterer diameter;
CON: contrast; SI: spectral intercept; COR: correlation; ENE: energy.
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3. Results
3.1. Patient and Tumour Characteristics

Sixty patients with locally advanced breast cancer were recruited in this validation
study. Four patients were excluded for incomplete QUS data, leaving 56 for analysis. The
median age of the 56 patients was 50 years old. The median initial primary tumour size was
3.7 cm. Tumours were grouped into four molecular subtype as in the previous study [29],
including ERBB2+ (ER-, PR-, HER2+), triple negative (ER-, PR-, HER2-), Luminal-A (ER+
and/or PR+, HER2-), and Luminal-B (ER+ and/or PR+, HER2+). Among all patients,
10.7%, 23.2%, 44.6%, and 21.5% were ERBB2+, triple negative, Luminal-A, and Luminal-
B, respectively. Among all the patients, 62.5% received doxorubicin–cyclophosphamide
followed by paclitaxel with or without trastuzumab as the neoadjuvant chemotherapy.
All patients who had HER-2 positive breast cancer received trastuzumab as part of their
neoadjuvant treatment. None of the patients received immunotherapy. Details of the
patient cohort including their age, ER status, progesterone receptor status, HER-2 receptor
status, histology, tumour grade, pre-chemotherapy tumour size, and chemotherapy or
target therapy regimen are described in Table 1.

Table 1. Patient characteristics.

No Age ER/PR/
HER-2 Histology Grade Pre-NAC Tumour

Size (cm)
Pre-NAC
T Stage

Pre-NAC
N Stage Treatment

1 47 +-- IDC III 3 2 1 AC—Paclitaxel (DD), 8 cycles
2 37 ++- IDC II-III 4.4 3 0 FEC100 x3, then Doce100x3
3 47 ++- IDC III 6.7 2 1 AC—Paclitaxel (DD), 8 cycles
4 50 +-- IDC III 1.9 1 0 AC—Paclitaxel (DD), 8 cycles
5 42 +-- IDC III 8.5 3 1 AC—Paclitaxel (DD), 8 cycles
6 50 ++- IDC I-II 6.1 2 1 FEC100 x3, then Doce100 + Tras x3

7 35 +++ IDC II 8 1 1 AC x4, then Paclitaxel (DD) +
Tras x4

8 67 --+ IDC II 4 3 1 FEC100 x3, then Doce100 + Tras x3
9 60 +-- IDC II 2.4 3 3 FEC100 x3, then Doce100x3

10 45 --- IDC III 2.7 3 1 AC x4, then Paclitaxel (DD) +
Tras x4

11 50 +++ IDC II 10.7 2 1 AC x4, then Paclitaxel (DD) +
Tras x4

12 51 ++- IDC III 4 2 1 FEC100 x3, then Doce100x3
13 40 +++ IDC II 5.9 3 1 FEC100 x3, then Doce100x3
14 72 +++ IDC III 3.5 1 1 FEC100 x3, then Doce100 + Tras x3
15 63 --- IDC III 4 2 1 AC—Paclitaxel (DD), 8 cycles

16 56 +-- IDC III 3.5 4 1 Docetaxel-cyclophosphamide,
4 cycles

17 49 +++ IDC II 4.9 2 0 FEC100 x3, then Doce100 + Tras x3
18 50 ++- IDC I 3 2 1 AC—Paclitaxel (DD), 8 cycles

19 * 60 --- IDC II 7.3 2 1 AC—Paclitaxel (DD), 8 cycles
20 41 +-- IDC II-III 7.5 3 0 AC—Paclitaxel (DD), 8 cycles

21 * 72 --- IMC III 4.7 2 0 AC—Paclitaxel (DD), 8 cycles
22 53 --- IDC III 3.1 3 0 AC—Paclitaxel (DD), 8 cycles
23 63 ++- IDC II 7.4 2 2 FEC100 x3, then Doce100x3
24 64 +++ IDC I-II 3.4 2 0 FEC100 x3, then Doce100 + Tras x3
25 71 +-- IDC III 1.7 2 0 Weekly Paclitaxel x12+Tras x4
26 43 --- IDC II-III 5.6 2 0 AC—Paclitaxel (DD), 8 cycles
27 80 --- IDC III 10 2 1 AC x4, then weekly paclitaxel x12
28 37 ++- ILC I-II 12 3 1 FEC100 x3, then Doce100x3
29 27 --- IDC II-III 1.8 1 0 AC—Paclitaxel, DD, 8 cycles
30 37 +++ IDC II 2.6 2 0 FEC100 x3, then Doce100x3
31 60 --- IDC III 3.2 3 1 AC—Paclitaxel (DD), 8 cycles
32 72 ++- IDC I 3.4 2 0 AC—Paclitaxel (DD), 8 cycles
33 45 ++- IDC III 9.5 2 1 AC x4, then weekly paclitaxel x12
34 43 --- IDC III 2.1 2 0 AC—Paclitaxel (DD), 8 cycles

35 53 --+ IDC III 2.5 2 1 AC x4, then Paclitaxel (DD) +
Tras x4

36 54 +-+ IDC II 3.5 2 0 FEC100 x3, then Doce100 + Tras x3
37 48 +-+ IDC III 7.5 1 1 FEC100 x3, then Doce100 + Tras x3
38 68 +-- IDC III 3.6 2 1 AC—Paclitaxel (DD), 8 cycles
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Table 1. Cont.

No Age ER/PR/
HER-2 Histology Grade Pre-NAC Tumour

Size (cm)
Pre-NAC
T Stage

Pre-NAC
N Stage Treatment

39 51 ++- IDC II 11 3 1 FEC100 x3, then Doce100x3
40 73 ++- IDC III 7.8 3 2 AC—Paclitaxel (DD), 8 cycles
41 61 --+ IDC III 2.9 2 0 FEC100 x3, then Doce100 + Tras x3
42 44 +-- IDC III 6.4 2 0 AC—Paclitaxel (DD), 8 cycles
43 29 ++- IDC III 8.3 3 1 AC—Paclitaxel (DD), 8 cycles
44 65 --- IDC II 2.3 2 0 AC—Paclitaxel (DD), 8 cycles

45 43 --- IDC III 2.4 4 0 AC (DD) x4, then weekly
paclitaxel x12

46 32 +++ IDC II 7.5 3 1 AC (DD) x4, then weekly paclitaxel
x12 + Tras x 4

47 68 ++- IDC II 5 4 1 AC—Paclitaxel (DD), 8 cycles
48 41 ++- IDC II 2.9 1 1 AC—Paclitaxel (DD), 8 cycles

49 34 --- IDC III 1.9 1 1 Docetaxel-cyclophosphamide,
4 cycles

50 51 --- IDC III 1.9 1 1 AC—Paclitaxel (DD), 8 cycles

51 42 --+ IDC III 3.6 2 1 AC (DD) x4, then weekly paclitaxel
x12 + Tras x 4

52 51 ++- IDC III 3.3 2 0 AC—Paclitaxel (DD), 8 cycles

53 * 31 +++ IDC III 2.6 2 1 AC (DD) x4, then weekly paclitaxel
x12 + Tras x 4

54 44 --+ IDC III 3.7 2 0 FEC100 x3, then Doce100 + Tras x3
55 47 ++- IDC III 4.8 2 1 AC—Paclitaxel (DD), 8 cycles
56 34 ++- IDC II 3.2 2 1 AC—Paclitaxel (DD), 8 cycles

* had a change in neoadjuvant treatment following the disclosure of prediction result. The treatments were given
every 3 weeks unless otherwise specified. ER = estrogen receptor; PR = progesterone receptor; HER-2 = human
epidermal growth factor 2; NAC = neoadjuvant chemotherapy; IDC = invasive ductal carcinoma; ILC = invasive
lobular carcinoma; IMC = invasive mammary carcinoma; AC = doxorubicin–cyclophosphamide; DD = dose
dense; FEC 100 = 5-fluouracil, epirubicin 100 mg/m2, cyclophosphamide; Doce100 = docetaxel 100 mg/m2;
Tras = trastuzumab. The status of hormone receptors—estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (HER-2)—is indicated in this table as positive (+) or negative (-).

3.2. Prediction of Response

Amongst the 56 patients, 50 (89.3%) had achieved a response after neoadjuvant
chemotherapy. Among them, 47 patients were predicted to be responders using the model
being tested. Among the 6/56 (10.7%) patients who did not achieve a response after neoad-
juvant chemotherapy, four patients were predicted to be non-responders. The actual and
predicted response of each patient is given in Table 2.

Table 2. Predicted and actual response of all patients.

No Post-NAC Tumour
Size (cm)

Overall
Cellularity RCB Score Actual

Response
Predicted
Response

1 2.7 50 2.24 NR NR
2 2.5 11.25 2.92 R R
3 3 3 2.51 R R
4 1.3 75 1.98 R NR
5 0 0 0 R R
6 5.28 13.3 3.51 R R
7 5.7 0.2 0.92 R R
8 0 15 0 R R
9 7.2 5 2.72 R R
10 2.5 3 1.27 R R
11 2.4 9 3.24 R R
12 2 5 2.36 R NR
13 6 0 0 R R
14 1.2 0 0 R R
15 0.5 40 1.58 R R
16 1.9 80 3.09 R R
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Table 2. Cont.

No Post-NAC Tumour
Size (cm)

Overall
Cellularity RCB Score Actual

Response
Predicted
Response

17 2.5 10 1.59 R R
18 3.2 10 3.09 R NR

19 * 4 10 3.01 NR R
20 2 0 0 R R

21 * 3.5 - - NR NR
22 1.5 0 0 R R
23 7.5 15 3.82 R R
24 1.7 5 no score R R
25 0 0 0 R R
26 1.8 1 0.37 R R
27 4 10 3.20 R R
28 8 15 3.62 R R
29 1.5 10 1.29 R R
30 2.5 10 2.35 R R
31 2.5 30 1.94 R R
32 1.5 30 2.87 R R
33 4 25 1.99 R R
34 0.2 10 0.95 R R
35 2.5 3.66 0.92 R R
36 0 0 pCR R R
37 0.65 5 2.41 R R
38 4 40 3.83 R R
39 8.85 6.5 3.56 R R
40 4.5 1 1.2 R R
41 1.4 10 1.33 R R
42 4 0 pCR R R
43 8 2 2.72 R R
44 0.9 15 1.43 R R
45 2 0 0 R R
46 6.6 5.5 3.48 R R
47 2 12.5 1.60 R R
48 2.8 25 3.07 R R
49 1.3 0 pCR R R
50 2.5 70 3.88 NR NR
51 3.5 1 0.78 R R
52 5.5 0.05 0.72 R R

53 * 7.86 1.72 1.12 NR R
54 0 0 pCR R R
55 2 75 3.85 R R
56 6.5 15 3.12 NR NR

* had a change in neoadjuvant treatment following the disclosure of prediction result. RCB = residual can-
cer burden; R = responder; NR = non-responder; NAC = neoadjuvant chemotherapy; pCR = pathological
complete response.

The sensitivity, specificity, PPV, NPV, and F1 score of predicting treatment response
of all patients in the validation cohort were 94%, 67%, 96%, 57%, and 95%, respectively. A
matrix describing the treatment prediction result is given in Supplementary Figure S2a.

A small number of patients had unplanned changes in their chemotherapy during
treatment (changes in type chemotherapy regimen after prediction). Removing these
patients from the data set, the sensitivity, specificity, PPV, NPV, and F1 score of predicting
the treatment response of all patients in the validation cohort were 94%, 100%, 100%, 50%,
and 97%, respectively. A matrix describing the treatment prediction result for this is also
given in Supplementary Figure S2b.



J. Imaging 2025, 11, 109 10 of 16

3.3. Incorrect Prediction

Due to the low positive predictive value for non-response, a detailed review of all of
the patients who were misclassified as a non-responder was carried out. The misclassified
patients and the class score of each patient are described in Figure 3. In this Figure 3, the
horizontal axis, the class score represents the probability of predicting a particular patient’s
treatment response based on the model with QUS and texture derivative parameters using
the SVM-RBF classifier proposed in our previous study. The sign is assigned based on
the response class prediction (positive for responding prediction and negative for non-
responding prediction). The vertical axis, HP distance, represents the distance of a new
patient’s feature point from the QUS-radiomics support vector machine model hyperplane.
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Figure 3. Treatment response prediction. The right side of the graph represents predicted responders
(R zone), while the left side represents predicted non-responders (NR zone). Green and red squares
were actual responders and non-responders, respectively. Therefore, misclassified patients were
the red squares on the “R” zone and green squares in the “NR” zone. Here, the horizontal axis,
the class score, represents the probability of predicting a particular patient’s treatment response
based on the SVM-RBF model proposed in our previous study. The sign is assigned based on
the response class prediction (positive for responding prediction and negative for non-responding
prediction). The vertical axis, HP distance, represents the distance of new patient’s feature point from
the QUS-radiomics support vector machine model hyperplane.

A higher absolute value of the class score indicates a higher confidence of prediction
by the model.

Regarding the first patient (patient number 4 in Figure 3), the class score of prediction
was close to 0, which means that the radiomics features were borderline (indeterminate)
and did not strongly favour either responders or non-responders. In the second patient
(patient number 12 in Figure 3), the tumour had a poorly defined border in ultrasound
(Figure 4) and MRI, and it was possible that the delineated region of interest may not
have accurately included the tumour plus a 5 mm margin. This could have influenced the
accuracy of prediction. In the third patient (patient number 18 in Figure 3), the tumour
was very close to the Cooper’s ligament. The region of interest was the tumour with a
5 mm margin, which in this case included the Cooper’s ligament. This might have affected
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the prediction accuracy, as the imaging parameters of the Cooper’s ligament can be very
different from the usual 5 mm margin of adjacent breast tissue.
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Other patients which were misclassified had high DCIS content in their tumours.
Previous work has demonstrated that DCIS can be a confounder of QUS-based predictions
and monitoring of response.

4. Discussion
To our knowledge, this is the first validation study of a model based on the com-

bination of pre-treatment QUS, texture derivative, and molecular parameters to predict
the response to neoadjuvant chemotherapy in an independent data set of early-stage or
locally advanced breast cancer patients. The sensitivity, specificity, PPV, and NPV were
94%, 67%, 96%, and 57%, respectively. Removing patients who had unplanned changes
in their chemotherapy resulted in a sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) of all patients in the validation cohort of 94%,100%,
100%, and 50%, respectively.

Previously published prediction models using positron emission tomography–
computed tomography (PET-CT) radiomics features or CT radiomics features to predict
response to neoadjuvant chemotherapy in breast cancer had sensitivity and specificity
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of 81.8% and 78.9% (PET-CT) and 59% and 84% (CT), respectively [34,35]. As discussed
previously, the lower specificity (67%) of our study may be attributed to challenges in
outlining the tumour in ultrasound images for radiomics features analysis. Tumours with
poorly defined borders or close to the Cooper’s ligament may be particularly prone to
misclassification. However, after removing the patients who had unplanned changes in
their chemotherapy, the specificity values increased to 100%.

The strength of the study here includes the prospective design and the relatively
complete data of the clinical, imaging, and pathological assessment. As compared to
other prediction models using post-treatment scans, refs. [36,37], the current model has
the benefit of requiring only the pre-treatment scan. It means that if patients are predicted
to be non-responders, clinicians may consider alternate treatment options at the earliest
opportunity, though the optimal treatment strategy remains to be defined.

The study here has several limitations. First, the model described here aims to identify
patients who will respond poorly to chemotherapy and may benefit from a change in
treatment. However, it is not known whether the predicted non-responders have tumours
which are resistant to chemotherapy only, or their tumours are so aggressive that they
would not respond to any treatment modality. To answer this question, future clinical trials
should randomize patients who are predicted to be non-responders to either chemotherapy
or other treatment options of physicians’ choices such as hormonal treatment, targeted
therapy, radiotherapy, or upfront surgery if feasible. Predictive tools like ours are essential
to identify such patients for enrolment to clinical trials which may shed light on the optimal
management strategy.

Second, the chemotherapy regimen in both the development and validation cohort
was heterogeneous. Our data came from patients who were given a dose-dense regimen
given every 2 weeks, a standard regimen given every 3 weeks, sequential anthracycline
and taxane-based chemotherapy, and in a minority of patients taxane-based chemotherapy
only. Our data also included patients who had HER-2 overexpressed tumours and received
trastuzumab. The response to chemotherapy with or without target therapy may depend
on the schedule and drugs. It could be argued that a prediction model works best when
we included only selected regimen in the development or validation cohort. However,
we chose to include patients receiving different chemotherapy regimen to reflect the wide
variety of chemotherapy regimens received by patients in the real world. Such prediction
models will have wider external validity than those which were highly selective in the
treatment regimen received by patients.

Third, it should be noted that the patient composition in the development cohort and
validation cohort were somewhat different. Patients in the development cohort were treated
with neoadjuvant chemotherapy from 2009 to 2019. This cohort consisted exclusively of
patients who had locally advanced breast tumours, which reflected the major indication for
neoadjuvant chemotherapy at that time. Following the publication of landmark trials that
showed the benefit of adapting the adjuvant treatment based on the response to neoadjuvant
treatment, neoadjuvant chemotherapy had become the standard of care in selected patients
with early-stage HER-2 overexpressed or triple negative breast cancer [38,39]. Patients
in the validation cohort were treated between 2018 and 2021 and included those who
had relatively smaller (2–5 cm) tumours which were either HER-2 overexpressed or triple
negative. Due to the small sample size, it was not possible to perform subgroup analysis of
the predictive accuracy in patients with locally advanced tumours and early-stage tumours
(AJCC 7th edition, clinical stage T2N0/1 or T1N1). This can be an inherent limitation of
any prediction model of the treatment response in breast cancer, in which the management
algorithm is rapidly evolving overtime.
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Fourth, some tumours had poorly defined boundary and the delineation of tumour
for radiomics features analysis or measurement of its size could be subjective. This would
extend to analysis using either CT or MRI where these patients also had ill-defined bound-
aries. In the study here, the region of interest was defined by a sonographer and verified
by a breast radiologist or the principal investigator. We did not collect data regarding
the concordance rate of region of interest delineation such as the intraclass correlation
coefficient (ICC) and the concordance correlation coefficient (CCC) in the work, however,
this has been addressed in previous work [40]. Non-mass enhancing areas in MRI were
not studied in the work here. It has also been recognized from ongoing research that the
presence of DCIS and likely its micro calcifications result in misclassifications of data.

5. Future Research
Moving forward, future research may focus on increasing patient population, strat-

ifying the analysis based on treatment type, and incorporating additional information
such as the gene expression profile in model development training process to improve the
generalizability, robustness, and accuracy of the response prediction. The management
of breast cancer, particularly the adjuvant treatment, has become more personalized over
time. Gene expression profile, Ki-67 status, and the presence of specific genetic mutation
have all been used to guide the choice of adjuvant treatment [41–43]. Combining radiomics
and gene expression profile has the potential to further facilitate personalized treatment in
neoadjuvant chemotherapy.

After the initial development and validation of these models, patients should be
enrolled to randomized controlled trials that assess whether predicted non-responders to
chemotherapy can benefit from early initiation of alternate treatment. When interpreting
the results of these future studies, clinicians may need to bear in mind that breast cancer is
a heterogeneous disease with multiple subtypes and treatment landscape is changing over
time. As a result, a prediction model that was developed for some subtypes of breast cancer
patients in the past may not necessarily work well for other subtypes of breast cancer treated
in the modern era, unless an external validation study like ours has been performed.

6. Conclusions
In conclusion, the work here validated a prediction model for responses to neoadju-

vant chemotherapy in patients with breast cancers, based on radiomics features extracted
using QUS. Future research should aim to improve the accuracy of prediction especially
regarding the region of interest delineation and treatment type and evaluate whether the
treatment outcome can be improved in predicted non-responders by switching to other
treatment options.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jimaging11040109/s1, Figure S1: The QUS, GLCM based texture
and texture-derivative parameter estimation from the ultrasound data; Figure S2: Confusion matrix of
treatment response prediction results; Table S1: List of features used in treatment response prediction
model development during training process; Table S2: Optimal features selected for tumor response
classification using SVB-RBF classifier based on ultrasound QUS-Texture-Derivate and molecular
subtype; Table S3: Patient characteristics of the population used to develop treatment response
prediction model in 2023.
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