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Abstract: Rationale: Neoadjuvant chemotherapy (NAC) is a key element of treatment
for locally advanced breast cancer (LABC). Predicting the response of NAC for patients
with LABC before initiating treatment would be valuable to customize therapies and
ensure the delivery of effective care. Objective: Our objective was to develop predictive
measures of tumor response to NAC prior to starting for LABC using machine learning and
textural computed tomography (CT) features in different level of frequencies. Materials
and Methods: A total of 851 textural biomarkers were determined from CT images and
their wavelet coefficients for 117 patients with LABC to evaluate the response to NAC.
A machine learning pipeline was designed to classify response to NAC treatment for
patients with LABC. For training predictive models, three models including all features
(wavelet and original image features), only wavelet and only original-image features were
considered. We determined features from CT images in different level of frequencies using
wavelet transform. Additionally, we conducted a comparison of feature selection methods
including mRMR, Relief, Rref QR decomposition, nonnegative matrix factorization and
perturbation theory feature selection techniques. Results: Of the 117 patients with LABC
evaluated, 82 (70%) had clinical–pathological response to chemotherapy and 35 (30%)
had no response to chemotherapy. The best performance for hold-out data splitting was
obtained using the KNN classifier using the Top-5 features, which were obtained by
mRMR, for all features (accuracy = 77%, specificity = 80%, sensitivity = 56%, and balanced-
accuracy = 68%). Likewise, the best performance for leave-one-out data splitting could be
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obtained by the KNN classifier using the Top-5 features, which was obtained by mRMR,
for all features (accuracy = 75%, specificity = 76%, sensitivity = 62%, and balanced-accuracy
= 72%). Conclusions: The combination of original textural features and wavelet features
results in a greater predictive accuracy of NAC response for LABC patients. This predictive
model can be utilized to predict treatment outcomes prior to starting, and clinicians can
use it as a recommender system to modify treatment.

Keywords: NAC; LABC; CT imaging; textural features; machine learning

1. Introduction
Locally advanced breast cancer (LABC) is a heterogeneous disease with a wide variety

of clinical presentations [1,2]. LABC refers to locally advanced breast cancer, which includes
any tumor that is larger than 5 cm or that involves the skin or the chest wall [1,2]. LABC
also encompasses inflammatory breast cancer and cases where patients have fixed axillary
lymph nodes or involvement of the ipsilateral supraclavicular, infraclavicular, or internal
mammary lymph nodes [1,2]. LABC tumors present a significant clinical challenge, as
patients with locally advanced disease generally have lower survival rates compared to
those with early-stage breast cancer [1,2]. The standard treatment for LABC includes a mul-
timodality treatment comprised of systemic therapy, surgery, and radiotherapy [1,2]. The
resection of inoperable tumors in selected patients is feasible as neoadjuvant chemotherapy
(NAC) enhances tumor regression. This is subsequently followed by surgery, adjuvant
radiotherapy, and, if appropriate, targeted therapy or endocrine therapy [3].

LABC tumors treated with NAC present variable responses, with only 15–40% of
patients finally attaining pathological complete response to therapy [4]. Tumor pathological
response to NAC has been shown as an essential prognostic indicator for long-term disease-
free survival (DFS) and overall survival (OS) in a specific group of patients [5,6]. However,
the treatment response evaluation of LABC tumors to NAC is typically performed at the
end of the treatment period, several months following the commencement of treatment.
The assessment relies on pathological evaluations—typically, a Miller–Payne (MP) grading
system is employed to evaluate tumor cellularity by comparing pre-treatment core-needle
biopsies with post-treatment surgical specimens [6,7]. However, because of the invasive
nature of these approaches, non-invasive imaging techniques to assess treatment responses
in LABC tumors are sought. Imaging features that can predict tumor responses at early
stages of NAC could steer personalized treatments.

Histopathological analysis and quantitative imaging techniques have provided in-
sights into various characteristics used to assess the response of LABC tumors to NAC,
particularly by applying artificial intelligence [8,9]. LABC tumors responsive to NAC exhib-
ited less cell proliferation in contrast to those of non-responders, attributed to the increase
in apoptosis [10,11]. In addition, a study showed a correlation between human epidermal
growth factor receptor 2 (HER2) expression and response to NAC [12]. HER2-positive
tumors demonstrate considerably higher rates of attaining pathological complete response
than those of HER2-normal tumors [12]. Previous studies using diffuse optical spectro-
scopic techniques reported a significant difference in changes of hemoglobin contents after
1 week of therapy between complete pathological response in contrast to those with partial
pathological response [13–15]. Other studies that employed magnetic resonance imaging
(MRI) [16] and circulating DNA and RNA-integrity quantifications [17] assessed response
prediction after the commencement of chemotherapy.
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According to the St-gallen Guidelines [18], the LABC subtypes were categorized
into four molecular subtypes, including Luminal A (ER+, PR+, HER2- and Ki-67 < 14%),
Luminal B (ER+, HER2+, any Ki-67 and any PR), HER2-enriched (ER-, PR- and HER2+),
and triple negative (ER-, PR- and HER2-).

Recently, radiomics has emerged as a promising field in quantitative imaging [19–21]
Radiomics aims to enhance the existing imaging data through the automatic determination
of a large number of features using advanced feature analysis techniques [19–21]. Previous
studies have elucidated the potentials of radiomics for LABC treatment outcome prediction
using different imaging modalities [22,23].

Therapy response to breast cancer analysis using imaging techniques has been in-
vestigated in several studies based on tumor size variation [24]. Imaging approaches
such as dynamic contract-enhanced magnetic resonance imaging (DCE-MRI) [16], positron
emission tomography (PET) [25,26], diffuse optical imaging (DOI) [26,27], ultrasound
(US) imaging [28,29] and quantitative ultrasound [30–33] have been utilized as imaging
techniques to evaluate treatment response to breast cancer. Although effectiveness and
promising results are reported in all these studies, the price and accessibility of DCE-MRI,
price and radionuclide injection of PET, resolution of volumetric DOI images and quality
of 3D volumetric US images are the main challenges for these imaging techniques.

Quantitative imaging has attracted attention to assess the response to chemotherapy
in patients with LABC. The reported results of QUS and DOI are promising for predicting
therapy response prior to the initiation of treatment [22,23]. The findings from these studies
indicated a tumor aggressiveness and responsiveness to chemotherapy and the micro-
structure and metabolic characteristics of tumors. Quantified features are determined from
QUS and DOI images and used to predict the treatment response.

Computed tomography (CT) is a powerful imaging technique used to provide 3D
volumetric images to analyze the micro-characteristics of a cancerous tumor. Quantitative
CT (qCT) is employed to quantify CT images to extract informative features for treatment
response prediction. Although the resolution of CT is considerably larger than cellular
dimensions, the correlation between CT voxel intensities and tissue micro-structure can
be used to interpret tumor response. In keeping with this, qCT has been used for disease
diagnosis [34], disease discrimination [35] and disease progression prediction [36]. In the
context of treatment response analysis, contrast-enhanced CT (CE-CT) is used to analyze
cancer response to NAC for breast cancer [37], and textural qCT is used to predict response
to NAC treatment for LABC patients prior to the start of treatment [38]. Zhange et al. [39]
applied ResNet34 to extract deep radiomics features from DCE-MRI to predict axillary
response after NAC. Yongfeng et al. [40] extracted radiomics features from MRI and trained
multivariate logistic regressions to predict early response to NAC treatment. Yu et al. [41]
used deep learning radiomics to extract deep features from pretreatment ultrasound images
using deep convolutional neural networks to evaluate NAC response. Oda et al. [42] ex-
tracted CT radiomics features to build a machine learning model to predict the pathological
response of NAC. Identifying an optimized predictive model that incorporates comprehen-
sive and discriminative features stands as the primary void in research on predicting NAC
outcomes. Selecting the most important and discriminative features significantly affects
the training phase of machine learning in terms of the overfitting challenge. Although
machine and deep learning have received great attention for predicting treatment outcomes,
overcoming overfitting and achieving effective generalization remain persistent problems.

In this study, to address the above limitation, we proposed a machine learning model
to predict outcomes of NAC for patients with LABC based on determined radiomics
features of CT at different levels of frequencies. Therefore, we hypothesize that CT texture
features of LABC tumors provide prognostic indications for assessing therapy response.
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We utilized the pool of radiomics features for building a multi-variate classification models
to predict response. This study builds upon a preliminary study on quantitative CT (qCT)
for LABC response prediction reported earlier [38]. Here, we expanded the cohort size,
determined more radiomics features (specifically, the inclusion of wavelet features), and
improved model building and evaluation strategies. Specifics on the improvements include
the following: data preprocessing and the evaluation of different feature selection methods.
We applied the most recent advanced feature selection methods to improve the performance
of the classifier. To show the effectiveness of wavelet features, we considered three models
to build the classifier, including only original CT image features, only wavelet features and
a combination of original CT image features and wavelet features.

2. Material and Methods
2.1. Study Protocol and Data Acquisition

This research was carried out in compliance with the guidelines established by the
institution ethics guidelines at Sunnybrook Health Sciences Center (SHSC). This study
enrolled a total of 117 patients (82 responders and 35 non-responders) with LABC under-
going NAC (in the timeline 2019–2022). All experimental protocols were approved by
SHSC, and consent was obtained from all subjects. The inclusion of patients in this study
was contingent upon obtaining written informed consent. Tumor sizes were obtained
from magnetic resonance imaging (MRI) scans performed as part of patients’ standard of
care. Histopathological analysis of pre-treatment core-needle biopsy specimens confirmed
the cancer diagnosis for all patients. The specimens provided information regarding the
primary cellularity, tumor subtype, and hormone receptor status expressions that include
estrogen receptor (ER), progesterone receptor (PR), and HER2 expressions. All patients
completed a full course of NAC that lasted commonly for 4–6 months. Subsequently, these
patients underwent either lumpectomy or mastectomy. After surgery, adjuvant therapies
that consisted of radiation, maintenance Transtuzumab for HER2-positive tumors or en-
docrine therapy (for hormonal-receptor-positive tumors) were initiated as per standard
institutional practice. The oncology treatments consist of AC-T or FEC-D chemotherapy
+/− Herceptin, which continue to be administered to a majority of chemotherapy-naive
patients with locally advanced breast cancer. This is carried out at Sunnybrook Health
Sciences Centre based on guidelines from Cancer Care Ontario. This study did not include
smaller tumors on purpose since those are handled differently. If primary tumor sizes were
small, they were accompanied by un-reselectable bulky lymph nodes to meet the criteria of
locally advanced breast cancer.

Based on institutional standard of care, pre-treatment CE-CT images of the breast were
obtained for all patients with LABC. The multi-slice CT scanner (LightSpeed, GE Medical
Systems, Chicago, IL, USA) had the following scan parameters: tube voltage—120 kV, X-ray
tube current—10–367 mA, slice thickness—2.5 mm, pixel spacing—0.8 × 0.8 mm, and slice
size—512 × 512 pixels, which were applied in helical mode. To measure tumor size and
evaluate chest wall involvement, patients underwent clinical MRI scans before and after
treatment, following the institutional standard of care for patients with LABC.

2.2. Pathological Evaluation of Tumor Response

The patients received either lumpectomy or mastectomy after completing a full course
of NAC. Standard histopathologic procedures were employed to evaluate for tumor patho-
logical response to NAC as part of clinical care. Patients were classified into two groups—
non-responders (‘NR’) and responders (‘R’)—using a modified response (MR) grading
system based on the Response Evaluation Criteria in Solid Tumor (RECIST) [24] and the
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residual tumor cellularity [6]. RECIST assesses the percent change in tumor size (in its
longest dimension) from pre-treatment and post-treatment time points.

An MR score of 1 is associated with no reduction in tumor size. An MR score of 2 was
associated with a reduction in tumor size up to 30%. An MR score of 3 was associated with
a reduction in tumor size between 30 and 90%. An MR score of 4 was associated with a
reduction in tumor size of more than 90%. Lastly, an MR score of 5 was associated with no
evidence of residual tumor at all.

Alongside these RECIST-based criteria, the residual tumor cellularity was also taken
into account in order to assess response. Here, a threshold of 5% for tumor cellularity was
utilized. Responder tumors are those with residual cellularity less than or equal to 5%
(<=5%); otherwise, tumors were non-responders based on only cellularity criterion. The
overall response combined both RECIST-based criteria related to tumor size reduction and
residual tumor cellularity. A RECIST criterion considers a patient as a responder (‘R’) if
either the reduction in tumor size was greater than 30% (MR score 3–5) or residual tumor
cellularity was low (<=5%). A patient was a non-responder (‘NR’) if the reduction in tumor
size was below 30%, or there was an enlargement in tumor size (MR score 1–2). We used
both RECIST-based criteria and residual tumor cellularity to establish the target response
for binary classification.

2.3. Feature Determination and Pre-Processing

The regions of interest (ROIs) were manually specified for all CT image slices to cover
the whole tumor. Trained staff under the supervision of expert oncologists performed all
the tumor segmentations in 3D CT images (a tumor of each slice is segmented). Texture-
based CT radiomic features were determined using a Pyradiomics Python package [43].
Radiomics features were determined for both images and wavelet-based decomposed
images to obtain comprehensive information about the images. The determined texture-
based CT radiomics features were 14 shape-based features, 19 first-order statistics features,
24 gray-level co-occurrence matrix (GLCM) features [44], 16 gray-level run-length matrix
(GLRLM) features [45], 16 gray-level size-zone matrix (GLSZM) features [44], 14 gray-
level dependent matrix (GLDM) features [44] and 5 neighboring gray-level dependence
matrix (NGLDM) features [46]. All features were determined for image and wavelet
decompositions, but shape-based features were not considered for wavelet decompositions.
Table 1 shows the determined features from each texture-based CT radiomic.

Table 1. Extracted radiomics features of original image and wavelet coefficients.

Radiomics
Features Type Radiomics Features

First Order Features:

Energy
Total Energy

Entropy
Minimum

10th percentile
90th percentile

Maximum
Mean

Median

Interquartile Range
Range

Mean Absolute Deviation (MAD)
Robust Mean Absolute Deviation

Root Mean Squared (RMS)
Skewness
Kurtosis
Variance

Uniformity

Shape Features:

Elongation
Flatness

Least Axis Length
Major Axis Length

Maximum 2D Diameter Column
Maximum 2D Diameter Row
Maximum 2D Diameter Slice

Maximum 3D Diameter
Mesh Volume

Minor Axis Length
Sphericity

Surface Area
Surface Volume Ratio

Voxel Volume
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Table 1. Cont.

Radiomics
Features Type Radiomics Features

GLCM:

Autocorrelation
Joint Average

Cluster Prominence
Cluster Shade

Cluster Tendency
Contrast

Correlation
Difference Average
Difference Entropy
Difference Variance

Dissimilarity
Joint Energy

Joint Entropy
Homogeneity 1
Homogeneity 2

Informational Measure of Correlation (IMC) 1
Informational Measure of Correlation (IMC) 2

Inverse Difference Moment (IDM)
Maximal Correlation Coefficient (MCC)

Inverse Difference Moment Normalized (IDMN)
Inverse Difference (ID)

Inverse Difference Normalized (IDN)
Inverse Variance

Maximum Probability
Sum Average
Sum Variance
Sum Entropy

Sum of Squares

GLRLM:

Short Run Emphasis (SRE)
Long Run Emphasis (LRE)

Gray Level Non-Uniformity (GLN)
Gray Level Non-Uniformity

Normalized (GLNN)
Run Length Non-Uniformity (RLN)

Run Length Non-Uniformity
Normalized (RLNN)

Long Run Low Gray Level
Emphasis (LRLGLE)

Long Run High Gray Level
Emphasis (LRHGLE)

Run Percentage (RP)
Gray Level Variance (GLV)

Run Variance (RV)
Run Entropy (RE)

Low Gray Level Run Emphasis (LGLRE)
High Gray Level Run Emphasis (HGLRE)

Short Run Low Gray Level Emphasis (SRLGLE)
Short Run High Gray Level Emphasis (SRHGLE)
Long Run Low Gray Level Emphasis (LRLGLE)

Long Run High Gray Level Emphasis (LRHGLE)

GLSZM:

Small Area Emphasis (SAE)
Large Area Emphasis (LAE)

Gray Level Non-Uniformity (GLN)
Gray Level Non-Uniformity

Normalized (GLNN)
Size-Zone Non-Uniformity (SZN)

Size-Zone Non-Uniformity
Normalized (SZNN)
Zone Percentage (ZP)

Gray Level Variance (GLV)

Zone Variance (ZV)
Zone Entropy (ZE)

Low Gray Level Zone Emphasis (LGLZE)
High Gray Level Zone Emphasis (HGLZE)

Small Area Low Gray Level Emphasis (SALGLE)
Small Area High Gray Level Emphasis (SAHGLE)
Large Area Low Gray Level Emphasis (LALGLE)
Large Area High Gray Level Emphasis (LAHGLE)

GLDM:

Small Dependence Emphasis (SDE)
Large Dependence Emphasis (LDE)
Gray Level Non-Uniformity (GLN)

Gray Level Non-Uniformity
Normalized (GLNN)

Dependence Non-Uniformity (DN)
Dependence Non-Uniformity

Normalized (DNN)
Gray Level Variance (GLV)

Dependence Variance (DV)
Dependence Entropy (DE)
Dependence Percentage

Low Gray Level Emphasis (LGLE)
High Gray Level Emphasis (HGLE)
Small Dependence Low Gray Level

Emphasis (SDLGLE)
Small Dependence High Gray Level

Emphasis (SDHGLE)

NGLDM:

Coarseness
Contrast
Busyness

Complexity
Strength

2.4. Feature Determination Using Wavelet Transform

Feature determination was carried out at different levels of spatial frequency using
wavelet transform. Shift variance is the main drawback of discrete wavelet transform
(DWT), which should be suppressed. Aiming to tackle this defect, stationary wavelet
transform (SWT), which is the translation-in-variance modification of DWT, was applied to
decompose images to different level of frequencies. Therefore, the pyradiomics-PyWavelets
Python package was applied to extract radiomics features at different levels of frequen-
cies [43]. Then, images were decomposed to eight coefficients (LLL, LLH, LHL, LHH,
HLH, HLL, HHL and HHH) using two-level wavelet decomposition. In this study, the
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‘haar’ mother wavelet function and two-level decomposition were considered for radiomics
feature determinations. Details of the wavelet transform for feature determination are
provided in the Supplementary Materials (Section S1 and Figure S1).

Therefore, 107 and 93 features were determined for original images and wavelet
decompositions, respectively.

2.5. Feature Selection

All feature selection and standardization were performed on the training set. All fea-
tures were normalized using Z-score standardization (mean subtraction and normalization
to the standard deviation for each feature). Data were randomly divided into training
and test sets in order to reduce the chance of bias in the training set, and the mean and
maximum value of performance were reported. Feature selection is categorized as one of
the most important steps of data preprocessing in order to decrease the dimension of data,
reduce the probability of overfitting and obtain the most discriminative features.

Feature Selection Techniques

Feature selection techniques follow the three strategies, including filter, wrapper and
embedded. In the filter strategy, features are selected independent of the classifier, such
as Laplacian score feature selection. In the wrapper strategy, features are selected based
on the performance classifier, such as sequential feature selection [47]. In the embedded
strategy, feature selection is a part of the training process, such as a decision tree. In
terms of label information, feature selection is classified into supervised, unsupervised and
semi-supervised [47]. In this study, we applied five different feature selection techniques.

minimal-Redundancy-Maximal-Relevance (mRMR) [48]: mRMR is a filter-based su-
pervised feature selection technique. mRMR ranks the features by maximizing the mutual
information between features and the labels while minimizing mutual information among
the selected features themselves.

Relief [49]: Relief is a filter-based supervised feature selection technique. Relief obtains
the best features based on their ability to distinguish between instances.

Perturbation-based feature selection (PFS) [50]: PFS is a filter-based supervised feature
selection technique. PFS obtains uncorrelated features based on perturbation theory by
solving the least-square problem for data and perturbed data (the matlab code can be found
at http://github.com/majid1292/DRPT (accessed on 28 February 2025).

Reduced row echelon form (Rref) [51]: Rref is a filter-based supervised feature selection
technique. Rref sorts all features based on information gain and applies reduced row
echelon form to extract all independent features.

QR feature selection (QR) [52]: QR is a filter-based unsupervised feature selection
technique. QR works based on matrix factorization. In this technique, data are decomposed
to column space and null space, such that all information is embedded in column space.
The features corresponding to column space are obtained by a permutation matrix.

Nonnegative matrix factorization feature selection (NMFFS) [53]: NMFFS is a filter-
based unsupervised feature selection technique. NMFFS decomposes data to a feature
weight matrix and representation matrix, which are nonnegative. Features are ranked by
considering orthogonality constraints on the feature weight matrix (the pseudo code can be
found in Algorithm 1 [53]).

(Details of each feature selection method can be found in Supplementary Materials S2).

http://github.com/majid1292/DRPT
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2.6. Training Model

Due to the imbalance in our data, the classifier’s performance is significantly impacted. In
order to tackle this challenge in the training phase, we employed the SMOTE method for the
oversampling of the minority group [54]. This up-sampling in the training phase improves the
learning process for classifiers to discriminate responders and non-responders. After ranking
features, Top-5, Top-10 and Top-15 features were considered to train the classifier.

2.7. Response Prediction

The three classifiers included K-nearest neighbor (KNN), support vector machine
(SVM) with RBF kernel, and decision tree (DT), which were employed for classifying
patients with a response and those without. All the hyperparameters of KNN, SVM
and DT are tuned using a grid search. SVM with RBF kernel has two hyperparameters
(‘C’, the trade-off between non-separable samples and the complexity of the algorithm,
and ‘gamma’, which is the radius of the RBF kernel) that were tuned by grid search.
Hyperparameter tuning significantly affects the performance of classifiers. SVM works
based on risk minimization by finding a hyperplane to discriminate between responders
and non-responders, and it is robust against overfitting.

Three models were developed, including image features, wavelet features, and the
combination of image and wavelet features. Additionally, two data splitting strategies were
compared, including hold-out splitting (75% train and 25% test) and leave-one-patient-out
(LOPO) splitting. For hold-out splitting, 50 times runs were done and mean and maximum
values were reported.

2.8. Evaluation Metric

Accuracy, sensitivity, specificity, and balanced-accuracy were used to evaluate the
performance of classifiers on the test data, expressed as follows.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Speci f icity =
TN

TN + FP

Precision =
TP

TP + FP

Blanced − Accuracy =
Sensitivity + Speci f icity

2
where TP, TN, FP and FN indicate true positive (true response), true negative (true non-
response), false positive and false negative, respectively.

The schematic of the proposed method to classify the patients with a response and
those without a response is shown in Figure 1.



Tomography 2025, 11, 33 9 of 20

Tomography 2025, 11, x FOR PEER REVIEW 9 of 21 
 

 

2.8. Evaluation Metric 

Accuracy, sensitivity, specificity, and balanced-accuracy were used to evaluate the 
performance of classifiers on the test data, expressed as follows. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

𝑇𝑇𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

𝐵𝐵𝐵𝐵𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝐵𝐵 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴

2
  

where TP, TN, FP and FN indicate true positive (true response), true negative (true non-
response), false positive and false negative, respectively. 

The schematic of the proposed method to classify the patients with a response and 
those without a response is shown in Figure 1. 

 

Figure 1. This figure shows the method to extract features, concatenating features from original im-
age and wavelet decomposition, and training machine learning with these features to predict treat-
ment response. In wavelet decomposition, coefficient (A) represents approximation of image, coef-
ficient (B) represents horizontal detail, coefficient (C) represents vertical of image and coefficient (D) 
represents diagonal detail of image. 

3. Statistical Analysis 
All statistical analysis was performed using the MATLAB 2019 Statistics and Ma-

chine Learning Toolbox™ (ver. 9.6.0.1072779 R2020b, The MathWorks, Inc., Natick, MA, 
USA). An unpaired t-test was applied to statistically compare the selected features in the 
two response cohorts. 

  

Figure 1. This figure shows the method to extract features, concatenating features from original image
and wavelet decomposition, and training machine learning with these features to predict treatment
response. In wavelet decomposition, coefficient (A) represents approximation of image, coefficient (B)
represents horizontal detail, coefficient (C) represents vertical of image and coefficient (D) represents
diagonal detail of image.

3. Statistical Analysis
All statistical analysis was performed using the MATLAB 2019 Statistics and Machine

Learning Toolbox™ (ver. 9.6.0.1072779 R2020b, The MathWorks, Inc., Natick, MA, USA).
An unpaired t-test was applied to statistically compare the selected features in the two
response cohorts.

4. Implementation of Method
Feature determination was implemented in Python using PyRadiomics version 3.0.1.

The feature selection and classification were implemented using MATLAB R2020b (Math-
Works Inc., MA, USA). The codes were implemented using Intel(R) Core (TM) i7-1065G7
CPU 1.5 GHz CPU and 16 GB Ram.

5. Results
The participants of this study included 117 women with a mean age of 52 ± 11 (standard

deviation) years. The majority of participants (n = 82) had a clinic–pathological treatment
response (partial or complete response), in contrast to 35 women who had no treatment
response (stable disease or progressive disease), as defined by RECIST criteria [24]. Invasive
ductal carcinoma (IDC) was the major histopathology for patients, and a minority of the
patients were diagnosed with invasive lobular carcinoma (ILC) and invasive metaplastic
carcinoma (IMC). A majority of patients had positive estrogen (ER+) and progesterone
(PR+) receptors in tumors, which were found to be major molecular features in patients,
and positive Her2/Neu (HER2+) receptors and triple-negative tumors (ER-, PR-, HER2-)
were found in a minority of patients. On average, the tumor sizes changed from 5.2 cm
to 1.4 cm for responders and from 5.6 cm to 6 cm for non-responders. The chemotherapy
regimens used were doxorubicin (Adriamycin); cyclophosphamide followed by paclitaxel
(Taxol) (AC-T); 5-fluorouracil, epirubicin, and cyclophosphamide followed by docetaxel
(FEC-D); doxorubicin and cyclophosphamide followed by docetaxel (Taxotere) (AC-D); and
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paclitaxel and cyclophosphamide (TC). Furthermore, the monoclonal antibody tratuzumab
(Herceptin) (TRA) was also used for LABC patients with HER2+ tumors. There was no
therapy modification based on imaging during this observational study. The pathological
and clinical characteristics of patients are summarized in Table 2. We applied a t-test between
two groups, which is shown in Table 2 (statistically significant results are denoted by †).

Table 2. Clinical the pathological and clinical characteristics of patients.

Characteristics Responders
Mean (Std)

Non-Responders
Mean (Std)

Age 52 (11) 54 (10)
Initial Tumor Size 5.2 (2.5) cm 5.6 (2.7) cm

Histology Percentage (Count)
IDC 58 (70) 23 (65)
ILC 1 (1) 4 (11)
IMC 3 (3) 2 (5)

Molecular Features Percentage (Count)
ER+ 42 (51) 29 (82)
PR+ 37 (45) 24 (68)

† HER2+ 28 (34) 9 (26)
ER-/PR-/HER2- 22 (27) 4 (11)

ER+/PR+/HER2+ 15 (18) 6 (17)
ER+/PR+/HER2- 22 (27) 20 (57)
ER-/PR-/HER2+ 15 (18) 4 (11)

Residual Tumor Size 1.4 (2.4) cm 6 (5.5) cm
Response Percentage (Count)

Responding Patients 70 (82) -
Non-responding Patients - 30 (35)

Std = Standard Deviation, IDC = Invasive Ductal Carcinoma, ILC = Invasive Lobular Carcinoma, IMC = Invasive
Metaplastic Carcinoma, ER = estrogen, PR= progesterone. †: Statistically significant.

In total, 851 radiomic biomarkers were determined from CT images and wavelet coef-
ficients. Table 3 presents the classification scores of the classifiers for predicting treatment
response using hold-out data splitting for three models. The mean (after running 50 times)
and the maximum specificity, sensitivity, accuracy and balanced-accuracy are reported in
Table 3 (details provided in Supplementary Materials Figures S2 and S3, and Table S1).

Table 3. Performance of the outcome prediction for all three models using hold-out data splitting.

Classifier FST # Features
Spec Sens Acc B-Acc

Mean Max Mean Max Mean Max Mean Max
(%) (%) (%) (%)

Model 1: KNN mRMR Top-5 77 86 51 60 72 77 62 76
Model 2: KNN mRMR Top-10 78 88 52 58 74 78 64 73
Model 3: KNN mRMR Top-5 80 90 56 63 77 79 68 77

Model 1: Only Image Features, Model 2: Only Wavelet Features, Model 3: Image and Wavelet Features, B-Acc:
Balanced Accuracy, Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, FST: Feature Selection Technique, # Features:
The Number of Selected Features which led to maximum accuracy.

Table 4 shows the LOPO splitting performance (details provided in Supplementary
Materials Tables S2–S4).

In terms of response prediction for LOPO data splitting, using the Top-5 features
of model 3 (image and wavelet features), which are ranked by mRMR, and classifying
by KNN, the best results were achieved compared to other techniques (accuracy = 75%,
specificity = 76%, sensitivity = 62%, and balanced-accuracy = 72%). For hold-out splitting,
using the Top-5 features of model 3 (image and wavelet features), ranked by mRMR, and
classifying by KNN achieved the best result compared to other techniques (accuracy = 77%,



Tomography 2025, 11, 33 11 of 20

specificity = 80%, sensitivity = 56%, and balanced-accuracy = 68%). Results are the mean
of 50 runs using data randomly split to the training and test sets. Based on the sensitivity
metric, the model was robust against imbalanced challenge. Both the SMOTE technique
and effective feature selection contributed to the robustness of the model. The balanced
accuracy shows the capability of model to predict minor classes and major classes. Based
on balanced accuracy, our predictive model is robust to predict both the minor class and
major class.

Table 4. Performance of the outcome prediction for all three models using LOPO splitting.

Classifier FST # Features Spec
(%)

Sens
(%)

Acc
(%)

B-Acc
(%)

Model 1: KNN mRMR Top-5 69 58 68 66
Model 2: KNN mRMR Top-10 71 61 71 70
Model 3: KNN mRMR Top-5 76 62 75 72

Model 1: Only Image Features, Model 2: Only Wavelet Features, Model 3: Image and Wavelet Features, B-Acc:
Balanced Accuracy, Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, FST: Feature Selection Technique, # Features:
The Number of Selected Features which led to maximum accuracy.

The histogram of selected features is shown in Figure 2, which presents the frequency
of selected features using mRMR. The frequency of selected features for images and coeffi-
cients of wavelets is separately provided in the Supplementary Materials (Figures S2–S5).
They show the five most-ordered Kurtosis original image, the GLRLM grey-level variance
of the original image, first-order robust mean absolute deviation HLL, wavelet-LLH-GLDM-
dependence entropy and GLCM cluster shade LLL. Figure 3 presents representative CT
images with parametric feature maps overlaid, generated using the Top-5 selected features.
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Figure 2. This figure illustrates the frequency of selected features for 50 times runs. It shows the
frequency of selected features for extracted radiomic features from original image and each wavelet
coefficients (LLH, LHL, LHH, HLL, LLH, HHL, HHH, LLL).

A two-sided t-test (statistical test) was applied in order to assess the top selected
radiomics biomarkers in the responder patients and non-responder patients. Results of this
statistical test showed that the wavelet-LLH-GLDM-dependence entropy feature was the
statistically significant feature, with a p-value of 0.04. The p-value for all top features is
provided in the supplementary material (Supplementary Materials Table S5). Other features
on their own were not statistically significant but needed to be used in combination for
the classification of patients to occur. Three wavelet-based radiomics features were found
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among the Top-5 selected features, which shows the important role of wavelet features in
improving the machine learning classifier.
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Figure 3. Parametric maps for the two response groups: Representative CT images and parametric
overlaid map for a responding and a non-responding patient. The parametric maps demonstrate first
order Kurtosis original image (Feature 1 with range [0–4]), GLRLM grey level variance of original
image (Feature 2 with range [0–35]), first order robust mean absolute deviation HLL (Feature 3 with
range [0–18]), Wavelet-LLH-GLDM- Dependence Entropy (Feature 4 with range [0–4]) and GLCM
cluster shade LLL (Feature 5 with range [−14,000–0]).

Feature Selection Techniques Comparison

Table 5 presents a comparison of six different feature selection methods. The top results
were achieved using a combination of original features and wavelet features. Among the
methods, mRMR ranked first with an accuracy of 75%, specificity of 76%, sensitivity of
62%, and balanced accuracy of 72%. QR ranked second with an accuracy of 82%, specificity
of 39%, sensitivity of 70%, and balanced accuracy of 60%. NMFFS ranked last, with an
accuracy of 71%, specificity of 35%, sensitivity of 60%, and balanced accuracy of 54%.

Table 5. Performance of different feature selection techniques for LOPO cross-validation using
original image and wavelet features.

Technique/Metric Specificity Sensitivity Accuracy B-Accuracy

mRMR 76 62 75 72
Relief 78 36 64 57
PFS 81 35 67 56
Rref 86 30 69 57
QR 82 39 70 60

NMFFS 71 35 60 54
B-Accuracy: Balanced Accuracy.
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6. Discussion and Conclusions
The results found in this research indicate for the first time that CT-based textural fea-

tures at different frequency levels can be applied to predict LABC responses to NAC before
the start of treatment. In this study, CT images of 117 patients with LABC were collected
before chemotherapy initiation. Response assessments were conducted after neoadjuvant
chemotherapy treatment using a standard clinical methodology. Specifically, the response
of chemotherapy treatment was specified after the completion of the course of NAC based
on standard clinical (RECIST) and histopathological methods. Radiomic features were de-
termined using first-order statistics, shape, GLCM, GLRLM, GLSZM, GLDM and NGLDM
from CT images and wavelet decompositions of CT images. In total, 851 features were
obtained, and four filter-based feature selections (including mRMR, perturbation-based
techniques, relief and QR) were used in order to rank the features. The three classifiers
included decision tree (DT), support vector machine (SVM) and k-nearest neighbor (KNN)
methods, which were applied to predict the response of treatment. The best performance
for hold-out splitting was obtained by the mRMR-KNN methodology using Top-5 features,
with a mean accuracy and balanced accuracy of 77 and 68%, respectively. The best perfor-
mance for LOPO splitting was obtained by the mRMR-KNN methodology using Top-5
features, with a mean accuracy and balanced accuracy of 75% and 72%, respectively.

The details of cellular structures cannot be visualized using clinical CT due to spatial
resolution limitations. Previous studies demonstrated that there is a correlation between
cellular micro-structure characteristics and tumor response [23,55–57]. However, the voxel
intensity of CT images, which carries information linked to tissue attenuation coefficients,
can be used to detect variations in tissue micro-structure [58]. Therefore, tumor tissue micro-
structure can be characterized using textural features quantification at the CT resolution limit.
Textural features are able to quantify CT voxel intensities to determine spatial variations
information which can be used to analyze tumor structure and link it to response through
correlation. Therefore, quantitative CT biomarkers can be leveraged to discriminate responder
LABC patients form non-responder. The results of this study indicate that features from
wavelet decompositions are sufficient to distinguish responder patients from non-responder
patients predictively ahead of their chemotherapy. Specifically, the wavelet-LLH-GLDM-
dependence entropy feature was the only feature with a p-value less than 0.005.

Feature selection significantly influences the performance of learning algorithms.
Redundant and multicollinear features increase the probability of overfitting for learning
algorithms. Therefore, the most informative features are identified by feature selection.
The results in this work demonstrate that mRMR achieved the best performance compared
with other feature selection techniques. mRMR obtains informative features by minimizing
the redundancy amongst features and maximizing the relevancy between features linked
to target conditions simultaneously. The sensitivity to multicollinearity for classifiers is
different. DT is robust to multicollinearity since, as an algorithm, it is categorized as an
embedding learning algorithm. In DT, feature selection is a main part of classification, such
that features for splitting are chosen based on carried information. However, KNN and
SVM can be highly sensitive to multicollinearity since there is no feature selection or feature
ranking as part of learning.

Comparison among feature selection techniques shows the effectiveness of mRMR.
However, NMFFS was not effective approach. NMFFS proposed that the orthogonality
constraint could transform the feature weight matrix into an indicator matrix, making it suit-
able for feature selection. However, Saberi et al. [59] demonstrated that the orthogonality
constraint alone is insufficient to generate an indicator matrix.

Classes in this study were not balanced, and the number of responding patients
was the major label. Aiming to tackle this challenge, a SMOTE technique was used to
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oversample the minority class [60,61]. This technique decreases overfitting due to a majority
group and improves classification accuracy.

The effectiveness of imaging and textural analysis to predict chemotherapy treatment
outcomes has been researched in several studies. Sadeghi et al. [27] determined textural
features using GLCM methods from diffuse optical spectroscopic (DOS) images to predict
NAC response for 12 patients with LABC. They showed that DOI-based textural and
mean-value parameters can differentiate responder and non-responder patients. Tran
et al. [22] applied different classifiers, including logistic regression, naive Bayes type, and
KNN, to classify 37 LABC patient in terms of responding to NAC treatment using GLCM
textural features determined from DOS. Tadayyon et al. [23] determined texture features
from quantitative ultrasound (QUS) to predict NAC for 56 LABC patients. They showed
that QUS texture and image quality features can be effective predictors of tumor response
to NAC. Dastjerdi et al. [62] leveraged quantitative CT (qCT) to predict the response of
NAC for 72 LABC patients by machine learning and demonstrated the effectiveness of
qCT for response prediction. They determined GLCM features for all 2D CT slices and
used mRMR to rank features and SVM, DT, multilayer perceptron (MLP), and random
forest as classifiers to discriminate responders from non-responders. Likewise, Dastjerdi
et al., in another study, applied second-order GLCM to predict the NAC response for
LABC patients [57]. In second-order GLCM, GLCM is applied on a GLCM parametric
map for a second time. Teruel et al. [63] determined 16 GLCM textural features from
dynamic contrast-enhanced MRI (DCE-MRI) images to predict the pathological responses
of 58 LABC patients to NAC treatment. They found eight features that are statistically
significant in distinguishing responder patients from non-responders. Cheng et al. [64]
designed a study using 61 patients to predict the pathological complete response (pCR)
to NAC using 18F-FDG PET/CT and textural features. They determined the maximum
standardized uptake value, metabolic tumor volume and total lesion glycolysis as imaging
parameters and entropy, coarseness and skewness as textural features to analyze the pCR.
Consequently, the results indicated that variations in textural features after two cycles
of treatment could be found in both HER2- and HER2+ patients. The combination of
radiomics features and machine learning improved the efficiency of outcome prediction for
breast cancer [65].

Nevertheless, a small population can be main challenge for all these studies since
the generalization of machine learning algorithms can be directly affected by population
size. Secondly, these studies only consider GLCM as textural features, whereas in the
past, investigators have considered GLSZM, GLRLM, NGTDM and GLDM in addition
to GLCM. GLSZM, GLRLM, NGTDM and GLDM provide information about the size of
adjacent pixels, the length of consecutive pixels, the disparity between a particular gray
level intensity value, the average intensity value of neighboring pixels and the relative
frequency of gray level intensity, respectively. Furthermore, this work determined all of
these textural features at different frequencies using wavelet decomposition to provide
comprehensive information. Last but not least, this work determined 3D textural features,
in contrast to other studies that determined 2D textural features [57,62]. Three-dimensional
textural features provide 3D volumetric region-of-interest (ROI) information, which is
more comprehensive than 2D. The superiority of 3D radiomics features over 2D radiomics
features has been demonstrated in [66].

In comparison with deep learning techniques, we previously applied deep learning
networks to the LABC dataset in a previous study [67], achieving a maximum accuracy
of 77%. However, in this study, we attained an 80% accuracy using machine learning and
wavelet radiomics. The reason for this may be attributed to the small size of our dataset,
which hindered the effective training of the deep learning model.
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The overfitting and generalizability challenges for small-size datasets are highly corre-
lated with the type of machine learning algorithm. For instance, SVM is a risk minimizing
algorithm and robust to overfitting for small datasets. SVM obtains a hyperplane to separate
two classes by maximizing the margin between two classes.

This study demonstrated that qCT textural features could be utilized to predict the
response to NAC for LABC patients, and the results indicated the effectiveness of these
features in terms of sensitivity and specificity. Additionally, this study indicated the role
of determined features at different levels of frequency using wavelet decomposition to
improve the performance of prediction. Classifying the LABC patients that did not respond
to NAC treatment is a challenge, and any changes in standard treatment can lead to
complications for responder LABC patients. To this end, an equal importance weight
was considered for both non-responders and responders to establish a balance between
sensitivity and specificity.

The goal of this research was to develop an expert recommender system to optimize
chemotherapy treatment. Physicians can use this artificial-based system to modify treat-
ment and increase its efficiency. This system utilizes CT images and machine learning
algorithms to predict whether a patient will respond to standard chemotherapy or if the
regimen should be altered. The dataset size was a main limitation of our study, which
can limit generalizability. Training machine learning models using a large dataset leads to
better generalizability. Moreover, an external cohort validation dataset can be effective for
testing the robustness of the technique and indicates the generalizability of the algorithm.
Additionally, all patients in this study came from a center, and although this is useful for
machine learning in terms of consistency, multi-center data improve the generalizability
of algorithms by learning on different types of data, but they can be contaminated by
variability linked to different practices at different sites.

The performance of a classifier can be improved by a combination of clinical features
such as Nottingham grad and HER with radiomics features. Additionally, using genera-
tive models such as diffusion probabilistic methods can be efficient since they learn the
distribution of data.

For breast cancer patients, mammography is used primarily for diagnosis and is not
usable for therapy response prediction or the monitoring of responses. MRI is also primarily
used for diagnosis. Its use for predicting and monitoring responses during chemotherapy
remains in the research domain. Although NAC can also eradicate micrometastasis, with
locally advanced breast cancer, NAC is often administered to downstage disease. Data
from our research using different imaging modalities also indicate that local responses of
gross tumor translate into the response of micrometastatic disease, as features of tumors
receiving NAC can also be used as independent predictors of survival [68,69]. Hence, the
proof of concept is not partially wrong.

For clinical usage and financial limitations: (a) a CT-based methodology permits the
prediction (on an individual basis) of whether or not there will be a response to NAC, and
it complements tests such an oncotype or mammoprint tests, which provide risk-based
information on tumors linked to population data on whether chemotherapy is indicated
or not. (b) A CT methodology provides a prediction of local control, and tests of this
nature can also be used to predict disease-free survival and overall survival [68]. The
work here focused on optimizing a methodology for the prediction of local control. (c) The
methodology here offers cost-efficiency. CT-data are by default acquired in the standard
work-up of patients with LABC and hence readily clinically available. Multiple scans
can be rapidly obtained without the need for more expensive MRI infrastructure or more
expensive radionuclide-utilizing technologies such as PET-CT, both of which have also
been used for therapy response prediction.
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The primary challenge of this study was the limited dataset size. Generalizability is
needed for clinicians when making treatment decisions. Large and diverse datasets enhance
generalizability and reduce bias, leading to more reliable and unbiased outcomes. A robust
model with minimal uncertainty is typically trained on extensive and diverse datasets,
resulting in more dependable predictions. With good sensitivity and specificity, models
can be used, especially in scenarios where there is no clinical tool to provide comparable
information.

In conclusion, a new expert system based on qCT was proposed to predict chemother-
apy treatment response for patients with LABC before starting the treatment. In this method,
textural features of CT images and wavelet decompositions of CT images are determined
to train the learning algorithm for treatment response prediction. Using wavelet decom-
position to generate features at different levels of frequency provides a comprehensive
features matrix, which increase the performance of the machine learning algorithm. The
results of this pilot study in terms of accuracy of prediction are promising and show that
this algorithm can be used as recommender system to show NAC response prior to starting
the treatment. The clinicians can use this predictive model as a recommendation system
to pre-assess NAC treatment prior to starting. We found that wavelet radiomics features
improve the accuracy of prediction. Additionally, feature selection plays a significant role
for machine learning classifiers.
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https://www.mdpi.com/article/10.3390/tomography11030033/s1, Section S1 [70–72],
Section S2 [47–49,51,59,73–91], Figure S1: This figure illustrates Level-1 and Level-2 decomposi-
tions by wavelet transform. (a) Where A, H, V and D represent approximation, horizontal, vertical
and diagonal coefficients. (b) Level-2 discrete wavelet transform decomposition of image into eight
sub-band, Figure S2: The frequency of selected features in each iteration for all features (original
image and wavelet coefficients), Figure S3: The frequency of selected features in each iteration for
original image radiomic features, Figure S4: Frequency of selected features for wavelet coefficient;
(a) HHH, (b) HHL, (c) HLH, (d) HLL, Figure S5: Frequency of selected features for wavelet coefficient;
(a) LHH, (b) LHL, (c) LLH, (d) LLL, Table S1: Performance of the outcome prediction models for
hold-out cross validation using original image and wavelet features, Table S2: Performance of the out-
come prediction models for LOPO cross validation using only original image, Table S3: Performance
of the outcome prediction models for LOPO cross validation using only wavelet features, Table S4:
Performance of the outcome prediction models for LOPO cross validation using original image and
wavelet features, Table S5: Two-side t-test.
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