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Locally advanced breast cancer (LABC) is a severe type of cancer with a poor prognosis, despite 
advancements in therapy. As the disease is often inoperable, current guidelines suggest upfront 
aggressive neoadjuvant chemotherapy (NAC). Complete pathological response to chemotherapy 
is linked to improved survival, but conventional clinical assessments like physical exams, 
mammography, and imaging are limited in detecting early response. Early detection of tissue 
response can improve complete pathological response and patient survival while reducing exposure 
to ineffective and potentially harmful treatments. A rapid, cost-effective modality without the need 
for exogenous contrast agents would be valuable for evaluating neoadjuvant therapy response. 
Conventional ultrasound provides information about tissue echogenicity, but image comparisons 
are difficult due to instrument-dependent settings and imaging parameters. Quantitative ultrasound 
(QUS) overcomes this by using normalized power spectra to calculate quantitative metrics. This 
study used a novel transfer learning-based approach to predict LABC response to neoadjuvant 
chemotherapy using QUS imaging at pre-treatment. Using data from 174 patients, QUS parametric 
images of breast tumors with margins were generated. The ground truth response to therapy for each 
patient was based on standard clinical and pathological criteria. The Residual Network (ResNet) deep 
learning architecture was used to extract features from the parametric QUS maps. This was followed 
by SelectKBest and Synthetic Minority Oversampling (SMOTE) techniques for feature selection and 
data balancing, respectively. The Support Vector Machine (SVM) algorithm was employed to classify 
patients into two distinct categories: nonresponders (NR) and responders (RR). Evaluation results 
on an unseen test set demonstrate that the transfer learning-based approach using spectral slope 
parametric maps had the best performance in the identification of nonresponders with precision, 
recall, F1-score, and balanced accuracy of 100, 71, 83, and 86%, respectively. The transfer learning-
based approach has many advantages over conventional deep learning methods since it reduces 
the need for large image datasets for training and shortens the training time. The results of this 
study demonstrate the potential of transfer learning in predicting LABC response to neoadjuvant 
chemotherapy before the start of treatment using quantitative ultrasound imaging. Prediction of 
NAC response before treatment can aid clinicians in customizing ineffectual treatment regimens for 
individual patients.
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Locally advanced breast cancer is a severe type of cancer with a poor prognosis, despite advancements in therapy. 
In the US alone, the American Cancer Society reports 287,850 new cases of invasive breast cancer, 51,400 new 
cases of carcinoma in situ, and 43,250 deaths each year1. LABC affects mainly young women and results in a 
significant loss of life and a burden for families and society. As the disease is often inoperable, current guidelines 
suggest upfront aggressive neoadjuvant chemotherapy2–5. These patients have a 2- to 5-year survival rate of 
30–60%, with many experiencing local recurrences in addition to metastatic progression3. This implies that 
40–70% of chemotherapies administered to such patients are ultimately ineffective in terms of response rates 
and long-term survival. Complete pathological response to chemotherapy is linked to improved survival, but 
conventional clinical assessments like physical exams, mammography, and imaging are limited in detecting early 
response. Early detection of tissue response can improve complete pathological response and patient survival 
while reducing exposure to ineffective and potentially harmful treatments.

MRI and PET scans have been used as tools for response prediction, but they are expensive and require 
contrast agents and long scan times6. A rapid, cost-effective modality without the need for contrast agents would 
be valuable for evaluating neoadjuvant therapy response. Conventional ultrasound provides information about 
tissue echogenicity, but image comparisons are difficult due to different hardware configurations and instrument 
settings. Quantitative ultrasound overcomes this by using normalized power spectra to calculate quantitative 
metrics, including Average Scatterer Diameter (ASD), Average Acoustic Concentration (AAC), Midband Fit 
(MBF), Spectral Slope (SS), and Spectral Intercept (SI), which can characterize tumors and assist in treatment 
evaluation. These QUS spectral characteristics have been shown to correlate with patients’ response to NAC both 
prior to and after chemotherapy initiation7–10. In addition, QUS spectroscopy has been used to monitor therapy 
response by comparing the QUS parameters acquired at week 0 (baseline) to those acquired at weeks 1, 4, and 
8 after the initiation of NAC10,11.

Deep learning is a subfield of artificial intelligence that uses algorithms inspired by the structure and function 
of the brain to analyze images. These algorithms, known as artificial neural networks, can remove the process 
of extracting handcrafted features from images. Deep learning has been used in image analysis to perform 
object detection, image segmentation, and classification tasks. In a recent study, Taleghamar et al.7 investigated 
a deep-learning approach to predict LABC to NAC using quantitative ultrasound imaging from 181 patients 
at pre-treatment. Different convolutional neural network (CNN) architectures were investigated for feature 
extraction, including Residual Attention Networks (RAN) and ResNets. In a set of experiments, the feature maps 
were extracted from the tumor core and the core and its margin. After averaging the features from various tumor 
cross-sections, a fully connected network was used for response prediction. The ground truth response to NAC 
was identified for each patient after the surgery using the standard clinical and pathological criteria. Their results 
demonstrated that their developed model with the RAN architecture has an accuracy of 88% on the test set. 
However, their model was trained on a limited number of images, which may have contributed to the decrease 
in the model accuracy when applied to new, unseen data. Moreover, their training dataset was imbalanced (43 
nonresponders vs. 138 responders) and hence biased towards the responders’ class. A balanced and diverse 
dataset is crucial for deep learning models to perform well. In this work, we propose to use the transfer learning 
approach to predict treatment response. Transfer learning is a machine learning technique where a model trained 
on one task is fine-tuned on a second task using a smaller number of training examples compared to training 
a model from scratch on the second task12. This enables the model to leverage its knowledge of the first task to 
learn the second task quickly and helps overcome the problem of insufficient training data for the second task.

Results
Patient, tumor, and treatment characteristics
The pathological and clinical characteristics of locally advanced breast cancer patients undergoing neoadjuvant 
chemotherapy can be summarized in Table 1. The study patients had an average age of 51 years. The patients 
exhibited an initial average tumor size of 5.21 cm, which decreased to a residual average tumor size of 2.70 cm 
following the treatment. Of all the 174 patients, 137 were classified as responders, and the remaining 37 were 
designated as nonresponders. Histology indicates that 91% of patients were diagnosed with Invasive Ductal 
Carcinoma, 3% with Invasive Lobular Carcinoma, and the remaining 6% with Invasive Mixed Carcinoma. In 
terms of tumor grade, 6% of patients were classified as Grade I, 37% had Grade II tumors, and 48% had Grade 
III tumors, with the remnants of 9% not reported. As a result of systemic therapy, 42% of patients were subjected 
to AC-T (Adriamycin, Cyclophosphamide, and Paclitaxel), 21% with FEC-D (5-Fluorouracil, Epirubicin, 
Cyclophosphamide, and Docetaxel), and 37% with other chemotherapy regimens. Tumor distinction was 
performed utilizing molecular subtypes, including ERBB2 + (ER −, PR −, HER2 +), triple-negative (ER −, PR −, 
HER2 −), Luminal-A (ER + and/or PR +, HER2 −), and Luminal-B (ER + and/or PR + , HER2 +). Within the 
responder cohort, the distribution of molecular subtypes was as follows: 15% were classified as ERBB2 +, 27% as 
triple negative, 32% as Luminal-A, and 26% as Luminal-B. Among the nonresponder cohort, the breakdown of 
molecular subtypes was as follows: 0% were categorized as ERBB2 +, 22% as triple negative, 65% as Luminal-A, 
and 14% as Luminal-B.

Quantitative ultrasound parametric maps
Figure 1 shows QUS parametric maps of ASD, AAC, MBF, SS, and SI overlaid on the ultrasound B-mode images 
obtained from representative nonresponding and responding patients at pretreatment. A tumor in a B-mode 
image of a LABC patient’s breast can readily be identified as a hypo-intense mass surrounded by relatively hyper-
intense fibroglandular tissue. Parametric maps of ASD, AAC, MBF, SS, and SI hold further information about 
the tumor, with each region (core and margin) containing a unique textural pattern.
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Classification performance
Figure 2 shows the confusion matrices of response prediction on the unseen dataset. For the spectral slope, 
the developed model is capable of perfectly predicting all responders. Out of seven nonresponders, five are 
accurately predicted.

Table 2 shows the results of response prediction on the unseen dataset. Among all QUS parametric images, 
the model developed based on spectral slope parametric images performed the best in response prediction before 
treatment with, precision, recall, and F1-score of 100%, 71%, 83%, 93%, 100%, and 97% for the nonresponding 
and responding patients, respectively. The overall accuracy of the proposed model achieved an accuracy of 86% 
on the unseen dataset.

Survival curves
The overall survival and recurrence free survival curves for the two patient groups based on the clinical and 
pathological criteria are shown in Fig. 3. The five-year survival rates for responders and nonresponders are 96% 
and 88%, respectively. In terms of recurrence-free survival, responders exhibit a rate of 91%, while nonresponders 
show a lower rate of 82%. Differences between the two response groups are statistically significant ( p < 0.05).

Discussion and conclusion
This study investigated a novel transfer learning-based approach for predicting LABC response to neoadjuvant 
chemotherapy using QUS imaging at pre-treatment. The ground truth response to therapy for each patient was 
based on standard clinical and pathological criteria. The ResNet50V2 deep learning architecture was used to 
extract features from the parametric maps. This was followed by SelectKBest and SMOTE techniques for feature 
selection and data balancing, respectively. The SVM algorithm was employed to categorize patients into two 
distinct groups: responders and nonresponders. The developed model was evaluated using four performance 
metrics on the unseen dataset. These include precision, recall, F1-score, and balanced accuracy. The results of 
the transfer learning-based approach on an unseen dataset demonstrated that spectral slope parametric maps 
performed the best in response prediction, with precision, recall, and F1-score of 100%, 71%, 83%, 93%, 100%, 
and 97% for the nonresponding and responding patients, respectively. The balanced accuracy of the proposed 
model is 86%.

Table 1.   Pathological and clinical characteristics of LABC patients receiving NAC. The statistical chi-square 
analysis completed with the response type (NR and RR) exhibited the following results: menopause (Χ2 = 2.324, 
p = 0.313), histology (Χ2 = 5.545, p = 0.063), tumor grade (Χ2 = 4.840, p = 0.184), molecular subtype (Χ2 = 15.737, 
p = 0.001) and treatment (Χ2 = 10.957, p = 0.533).

NR (N = 37) RR (N = 137) All (N = 174)

Age 53 ± 11 51 ± 12 51 ± 11

Menopause (Χ2 = 2.324, p = 0.313)

 Postmenopausal (%) 41 49 47

 Premenopausal (%) 51 38 41

 Perimenopausal (%) 8 13 12

Initial tumor size (cm) 5.23 ± 2.64 5.21 ± 2.84 5.21 ± 2.79

Histology (Χ2 = 5.545, p = 0.063)

 IDC (%) 81 93 91

 ILC (%) 8 2 3

 IMC (%) 11 4 6

Tumor grade (Χ2 = 4.840, p = 0.184)

 Grade I (%) 11 5 6

 Grade II (%) 46 35 37

 Grade III (%) 41 50 48

 Not Reported (%) 3 10 9

Molecular subtype (Χ2 = 15.737, p = 0.001)

 ERBB2 + (%) 0 15 11

 Triple Negative (%) 22 27 26

 Luminal-A (%) 65 32 39

 Luminal-B (%) 14 26 24

Treatment (Χ2 = 10.957, p = 0.533)

 ACT (%) 51 39 42

 FECD (%) 24 20 21

 Others (%) 24 41 37

Residual tumor size (cm) 6.26 ± 4.71 1.73 ± 2.24 2.70 ± 3.47



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2340  | https://doi.org/10.1038/s41598-024-52858-y

www.nature.com/scientificreports/

It has been hypothesized that QUS-detected responses in tumors to cancer therapy are related to biological 
alterations in tumor microstructure and spatial heterogeneity. This led to several preclinical and clinical QUS 

Figure 1.   Representative B-mode, ASD, AAC, MBF, SS and SI parametric images with tumor core and margin 
regions of a nonresponder and a responder at pretreatment. The color bars indicate the values of the respective 
parameters across the tumor regions, each expressed through its corresponding unit. The white scale bar 
represents 5 mm.
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studies that were conducted to detect tumor response to treatment early and during the course of treatment7,13,14. 
In these studies, QUS spectral parameters such as MBF, SS, and SI demonstrated a significant correlation with 
tumor response to treatment. These spectral parameters are associated with scatterer characteristics, such as 
scatterer size and scatterer acoustic concentration15. Similarly, ASD and AAC, which are estimated from the 
ultrasound backscatter coefficient by fitting a spherical Gaussian model to the measured backscatter coefficient, 
have been used to monitor tumor response in LABC patients undergoing NAC15. Moreover, textural features 
determined from QUS parametric maps, such as contrast, correlation, energy, and homogeneity have been 
shown to predict tumor treatment response in breast cancer patients11,14. In these studies, manually engineered 
features, such as the statistical and textural features of the QUS parametric maps, were extracted and utilized for 
response prediction using conventional machine learning techniques. While the manual extraction process of 
such features is simple, easier to understand and analyze, it has its own drawbacks. First, it frequently necessitates 

Figure 2.   Confusion matrices of response prediction on the unseen dataset.

Table 2.   Performance metrics of the proposed model based on the unseen dataset.

QUS Patient Precision (%) Recall (%) F1-score (%) Balanced accuracy (%)

ASD
NR 75 43 55 70

RR 87 96 92

AAC​
NR 100 57 73 79

RR 90 100 95

MBF
NR 80 57 67 77

RR 90 96 93

SS
NR 100 71 83 86

RR 93 100 97

SI
NR 60 43 50 68

RR 87 93 90
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human intuition and domain expertise, which can be time-consuming. In addition, manually engineered features 
frequently require customization for particular datasets and may not generalize well. Convolutional Neural 
Networks, on the other hand, learn features directly from images, allowing them to acquire pertinent information 
for the specific task at hand, such as treatment response prediction. Moreover, CNNs learn hierarchical data 
representations. Through multiple levels of abstraction, they automatically discover and represent both low-level 
and high-level image characteristics. This ability to learn complex representations enables CNNs to capture 
intricate patterns and relationships in the images, which frequently results in higher accuracy.

In a recent study, Taleghamar et al.7 used a deep learning model to predict tumor response to treatment in 
patients with breast cancer using QUS before treatment. Different convolutional neural network architectures 
were used to extract features from QUS parametric maps. A fully connected network was used for treatment 
response prediction. Their developed models achieved an accuracy of 88% on an unseen dataset. However, 
their approach is computationally expensive and requires substantial amounts of labeled images for training 
which makes it unfavorable for the current problem. Transfer learning offers many advantages over traditional 
deep learning as it enables the use of models that have already been trained on vast datasets. By starting with 
pre-trained models, training time and resources can be significantly reduced. Moreover, it only requires a small, 
labeled dataset, as the pre-trained model has already learned generic features. In this work, the ResNet50’s lower 
layers were used to capture generic features from QUS maps, while the higher layers were replaced with SVM 
classifier to predict the treatment response of breast cancer patients (Fig. 4).

Among the various available architectures in computer vision applications, the ResNet was chosen for 
feature extraction since it employs skip connections that allow for much deeper architectures than conventional 
CNNs. Deeper networks can capture more intricate features and learn more abstract representations, resulting 
in enhanced performance on difficult tasks such as tumor response prediction. From the ResNet family of pre-
trained models (such as ResNet50V2, ResNet101V2, and ResNet152V2), the ResNet50V2 was used since it 

Figure 3.   Overall survival and recurrence free survival curves for the two patient groups based on clinical and 
pathological criteria.

Figure 4.   (a) Traditional deep learning image classification (b) Proposed approach using transfer learning.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2340  | https://doi.org/10.1038/s41598-024-52858-y

www.nature.com/scientificreports/

has a small size (50 layers) and hence has better generalization capabilities and a lower risk of overfitting when 
compared to other pre-trained ResNet family models.

Precision (also called Positive Predictive Value or PPV) measures the proportion of correctly classified 
positive instances out of the total instances predicted as positive. It is a measure of the classifier’s ability to 
avoid false positives. Recall (also called Sensitivity or True Positive Rate) measures the proportion of correctly 
classified positive instances out of the total actual positive instances. It is a measure of the classifier’s ability to 
capture positive instances. The F1-score is the harmonic mean of precision and recall. It provides a balanced 
measurement that incorporates both metrics and is especially useful when there is an imbalance between 
positive and negative occurrences such as in this dataset. Balanced accuracy computes the mean of the per-class 
accuracies while accounting for the imbalance in class sizes. It provides an overall measurement of the efficacy 
of the classifier across all classes. Since we are specifically focused on identifying the nonresponders, a positive 
case indicates that the patient falls into the nonresponder category. The proposed model has a precision, a 
recall, an F1-score, and a Balanced Accuracy of 100%, 71%, 83%, and 86%, respectively using the SS parametric 
maps. This indicates that this approach has a 71% chance of predicting a nonresponding patient while avoiding 
incorrectly classifying responding patients as nonresponders. This is essential to ensure that the chemotherapeutic 
treatment regimen is administered to all potentially responding patients. When dealing with unbalanced data, 
the F1-score performance metric is frequently considered superior to accuracy. In this study, the responders’ 
class (137) outnumbers the nonresponders’ class (37), therefore it is possible to obtain a high level of accuracy 
by simply predicting the majority class (responders) for all instances. This can, however, result in an inability to 
correctly identify instances of the minority class (nonresponders). Incorrectly predicting the nonresponders, 
implies the administration of an unnecessary treatment which could lead to missed opportunities to enhance 
health outcomes.

Further analysis of larger datasets, stratified by various NAC regimens and possibly various molecular 
subtypes, may result in more accurate predictive models. The proposed model could also facilitate randomized 
clinical trials exploring NAC regimen modifications for patients with a low probability of responding to standard 
interventions. In conclusion, this investigation demonstrates the adaptability of transfer learning for predicting 
therapy response using quantitative imaging at pretreatment. The devised transfer learning model accurately 
predicts the response of patients with locally advanced breast cancer to NAC. Prediction of NAC response prior 
to treatment can aid clinicians in customizing ineffectual treatment regimens for individual patients. These 
encouraging results motivate further investigation of alternative transfer learning architectures and larger, multi-
institutional patient cohorts to evaluate the robustness of these methodologies in clinical settings.

Methods
Study protocol
This investigation was conducted in accordance with the rules and regulations established by the Sunnybrook 
Health Sciences Centre’s institutional research ethics board and registered with ClinicalTrials.gov 
(NCT00437879). All experimental protocols were reviewed and approved by the Sunnybrook Research Institute 
research ethics board prior to commencing the study. All patients were enrolled with informed consent. The 
trial was open to 174 women between the ages of 27 and 83 who were diagnosed with LABC and scheduled for 
NAC and surgery.

All patients were subjected to a core needle biopsy prior to treatment as part of their standard of care to 
confirm a cancer diagnosis, histological subtype, and hormone receptor status to determine the tumor molecular 
subtype. In order to ascertain the initial tumor size prior to treatment, magnetic resonance images were acquired 
using a 1.0-T clinical MRI (GE Healthcare, Waukesha, WI) as part of the institutional standard of care for such 
patients. Ultrasound data was collected soon before patients began treatment. Mastectomy specimens were 
prepared onto a 5″ × 7″ whole-mount pathology slide and digitized using a confocal scanner (TISSUEscope™, 
Huron Technologies, Waterloo, ON) after surgery. A board-certified pathologist evaluated the samples and 
documented the findings in the patient’s medical record.

Using a modified response grading system, patients were divided into responder and nonresponder groups 
based on the clinical/pathological tumor response determined at the conclusion of their treatment11,14. A 
response is defined as the disappearance of all target lesions, and any pathological lymph nodes must have 
a reduction in short axis to < 10 mm or at least a 30% decrease in diameter of target lesions or cellularity < 5% in 
the tumor bed (invasive disease) irrespective of size. This category incorporates both complete responders and 
partial responders. On the other hand, a non-response indicates less than a 30% reduction in tumor size and 
no significant alterations in tumor cellularity. This category incorporated stable disease and progressive disease.

Ultrasound data acquisition and parametric maps generation
Ultrasound RF data was acquired before the start of the treatment using an RF-enabled Sonix RP system 
(Analogic Medical Corp., Vancouver, Canada) equipped with an L14-5/60 transducer. The transducer operated 
at the center frequency of 6 MHz with a − 6 dB bandwidth of 3–8 MHz. For each patient, ultrasound data was 
collected at four to seven image planes across the tumor, with approximately one centimeter between each 
image plane with the transducer focused towards the center of the tumor. The lateral and axial dimensions of the 
image were 6 cm and 4–6 cm, respectively. Ultrasound data was digitally collected with a sampling frequency of 
40 MHz with a 16-bit resolution. On each ultrasound frame, a region of interest (ROI) was manually contoured 
corresponding to the tumor under the supervision of expert oncologists.

Standardization methods and the calculation of quantitative ultrasound parameters have been described 
in detail in previous work16 using a MATLAB-based (MathWorks, Natick, MA) custom software. In brief, the 
Fourier transform of the Hanning-gated RF data was obtained for each scan line. The mean power spectrum was 
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calculated by averaging the Fourier transforms of the analyzed regions. Using a reference phantom method, the 
average power spectrum was normalized to eliminate the effects of the system transfer function and transducer 
beam-forming17. The reference phantom consisted of glass beads with a diameter of 5–30 μm embedded in a 
homogenous background of microscopic oil droplets in gelatin (Medical Physics Department, University of 
Wisconsin, USA). The attenuation coefficient of the reference phantom was 0.576 dB/MHz.cm, and its speed of 
sound parameter was 1488 m/s. Within the − 6 dB bandwidth of the transducer, MBF, SS, and SI parameters were 
estimated using linear regression analysis as described in previous studies18,19. By fitting a spherical Gaussian 
form factor model to the estimated backscatter coefficient, ASD and AAC parameters were derived20,21.

In order to generate color-coded parametric maps for each QUS parameter, a sliding window technique 
was used. Each region of interest (ROI) consisting of tumor core and 5-mm margin22 was divided into square 
analysis blocks of size 10 ultrasonic wavelengths, with a 94% adjacent overlap in axial and lateral directions 
(2.2 mm × 2.2 mm). A previous study by Tadayyon23 et al. have demonstrated that QUS features in the core and 
margin of breast tumors can predict breast cancer response to neoadjuvant chemotherapy. Finally, QUS maps 
were cropped to eliminate the background and resized to 224 × 224 pixels using the MATLAB software package.

Transfer learning
Transfer learning is a machine learning technique in which knowledge acquired from solving one task is applied 
to a different task24. In transfer learning, a model that has been trained on a large dataset for a specific task is 
used as a basis for training a new model on a different but related task. By leveraging the pre-trained model’s 
learned features, the newly-trained model can benefit from the general knowledge captured during the pre-
training phase, which can lead to enhanced performance, quicker convergence, and a reduced need for training 
data. The weights of the pre-trained model are typically kept constant25. This enables the model to learn task-
specific characteristics while retaining the valuable information acquired during pre-training. Transfer learning 
is particularly advantageous when the new task has limited labeled data. Instead of training a model from the 
start, which requires a large amount of annotated data, transfer learning enables reusing the knowledge from 
a previously-trained model that was trained on a larger dataset or a different task. It is frequently employed in 
various machine learning domains such as computer vision, and natural language processing. Figure 4a shows a 
traditional deep learning image classification model where the convolutional (Conv) base is used to extract the 
features from the images and the fully-connected (FC) layers are used to perform the classification. The proposed 
transfer learning approach is shown in Fig. 4b. In this approach, features are engineered (detailed in the next 
section) after their extraction by the convolutional base. This is followed by the classification of LABC response 
using SVM26 algorithm instead of the FC layers. A custom Python™ program running on the Google Colab 
platform (Google, Inc., Mountain View, CA) was used for feature engineering, classification, and evaluation.

Feature engineering
Features were extracted using the ResNet50V2 neural network27,28. ResNet50V2 is a convolutional neural 
network that has been trained on more than a million images from the ImageNet database29 and hence no 
training on the LABC dataset was performed. ResNet50V2 is a modified variant of ResNet50 that performs 
better on the ImageNet dataset than ResNet50 and ResNet101. In ResNet50V2, the propagation formulation of 
the connections between blocks was modified. The preprocessed input images of QUS maps are 224 × 224 pixels. 
ResNet50V2 generates a 7 × 7 × 2048 feature map on its last feature extractor layer from the input image which 
is then transformed to a 1 × 100,352 feature vector. All QUS slices across the tumor were used to extract feature 
vectors which were then averaged to give one feature vector for each tumor.

A larger feature space does not always imply a better model description, since some features may not be 
relevant. Nonsignificant and redundant features must be eliminated. This was accomplished by keeping features 
that contain 90% nonzero values. This was followed by selecting the 13 best features ( 13 =

√
174, 174 being 

the number of patients) using the SelectKBest algorithm30. The SelectKBest is a feature selection technique 
commonly used in machine learning and data analysis. It is used to identify features based on the k features with 
the highest scores. Using ANOVA statistical analysis, the algorithm evaluates each feature independently and 
assigns a score to each feature. The score indicates the significance or relevance of the characteristic in relation 
to the objective variable.

The SMOTE technique31 was then employed to counteract the negative impact of the imbalanced dataset (in 
the dataset for this study, 37 NR vs. 137 RR) on classification performance. This technique generates random 
synthetic cases with attributes similar to those of actual cases but without replications, from the minority 
group. Consequently, it permits expanding the minority group’s representation while preserving the actual data 
composition. To avoid incorporating synthetic examples that may inadvertently leak information into the testing 
process, data balancing was only performed on the training set32.

Classification and evaluation
The SVM algorithm with the linear kernel was used in the classification of patients. It is a type of algorithm that 
uses a linear decision boundary to categorize data points. To ensure an objective evaluation of the classifier’s 
performance and determine how the model will generalize to an independent dataset, 20% of all cases were 
randomly selected for testing and treated as unseen data when selecting features (next step) to avoid bias. The 
remainder (subset not used for testing) underwent fivefold cross-validation. During fivefold cross-validation, 
the non-testing subset is randomly divided into five distinct subsets, each containing one-fifth of the entire 
dataset. The model is trained on four of the folds, with the remaining fold used for validation. Four performance 
metrics were used to evaluate the model on the unseen test set. These include precision, recall, F1-score, and 
balanced accuracy.
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Data availability
Data collected and analyzed in this study are available from the Sunnybrook Research Institute Research Ethics 
Board approved study “Pilot Investigation of Ultrasound Imaging and Spectroscopy and Ultrasound Imaging of 
Vascular Blood Flow as Early Indicators of Locally Advanced Breast Cancer Response to Neoadjuvant Treatment”. 
Since this is patient data, the authors are legally bound to keep it confidential. Data can be made available upon 
request and review by the Institutional Review Board (IRB). Data requests may be sent to Dr. Kullervo Hynynen, 
Vice-president, Research & Innovation, Sunnybrook Research Institute (khynynen@sri.utoronto.ca).
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