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Radiomics is an emerging field in medicine and oncol-
ogy involving quantitative imaging analysis. While 

imaging has traditionally been used for diagnostic pur-
poses, the introduction of computer vision and advanced 
machine learning classifier algorithms has enabled the 
development of noninvasive imaging biomarkers (1,2). 
High-dimensional image analysis can be undertaken with 
different imaging modalities such as US, CT, MRI, and 
PET, which are performed during various stages of stan-
dard oncologic practice. Quantitative imaging radiomics 
features are linked with a diverse spectrum of clinical end 
points, including histopathologic or molecular character-
ization, prognostication, and determination of treatment 
response (3). Quantitative US (QUS) techniques provide 
quantitative parameters that reflect the microstructures 
of tissues (4). QUS is more robust than qualitative im-
aging, as the former provides objective operator- and 

system-independent characterization of the tissues for 
diagnostic and prognostic purposes. QUS spectroscopy 
is a type of QUS technique that converts radiofrequency 
data into frequency spectra using fast-Fourier transform, 
which retains more detailed microstructural informa-
tion compared with conventional sonography (5,6). 
QUS spectroscopy is sensitive to changes in the cellular 
characteristics of tissue microstructure and their associ-
ated mechanical properties, which have been linked to 
differential clinical outcomes (7–10). Furthermore, QUS 
spectroscopy has been demonstrated as a reliable marker 
for detecting treatment-related changes at a cellular level 
arising from nuclear fragmentation, apoptosis, and other 
events related to cell death, leading to changes in US scat-
terer properties (11–15). Clinical studies have demon-
strated the utility of QUS radiomics in the prediction of 
response to neoadjuvant chemotherapy in patients with 
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Purpose: To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predict-
ing treatment response in individuals with head and neck squamous cell carcinoma (HNSCC).

Materials and Methods: This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47–80 
years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39–79 years}, 33 male, one female) with bulky 
node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation 
in 33–35 fractions over 6–7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. 
QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique 
for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end 
point. Model building and evaluation utilized nested leave-one-out cross-validation.

Results: Five delta (Δ) parameters had statistically significant differences (P < .05). The support vector machines classifier achieved a sensi-
tivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic 
curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment.

Conclusion: A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 
months after treatment completion with reasonable accuracy.
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squamous cell carcinoma given their very good response to 
radical treatment, achieving reduced toxicity while maintaining 
good local control. Radiomics analysis on QUS spectral para-
metric images can enhance response prediction in addition to 
the well-established human papillomavirus–positive status (22).

In this study, we explored the potential of a QUS radiomics 
model for early prediction of treatment response in metastatic 
lymph nodes. Our analysis involved the inclusion of higher-
dimensional (second-order texture) features and the application 
of advanced machine learning classifiers. We hypothesized that 
QUS spectral parametric imaging can help determine the cellular 
events and changes in acoustic properties during the early phase 
of RT, which can be correlated with the long-term response to 
RT as detected with standard imaging modalities.

Materials and Methods

Participant Selection
The institutional research ethics board (project identification 
no. SUN-3047) approved this prospective study conducted in a 
single institution and registered with ClinicalTrials.gov (registra-
tion no. NCT03908684). The study was conducted following 
good clinical practice according to the Declaration of Helsinki. 
All participants provided written informed consent for their par-
ticipation. Study accrual was carried out between January 2015 
and October 2019, with the final analysis performed in 2020.

All participants in this study have been previously reported 
(10). This prior study dealt with a pretreatment model, whereas 
in this study we report both pretreatment and early-in-treatment 
models. In addition, we have refined our model building and 
evaluation strategies to conform to standards in statistical learn-
ing. Participants diagnosed with biopsy-proven HNSCC with 
a primary site involving the oropharynx, hypopharynx, or lar-
ynx or carcinoma of unknown primary with bulky metastatic 
lymph node in the neck treated with curative-intent RT were 
considered eligible for this study. Participants with a history of 
prior interventions (surgery, systemic therapy, RT) for HNSCC, 
a history of RT in the head and neck region, or severe medical 
comorbidities resulting in limited life expectancy were excluded 
from the study. Additionally, participants with metastatic disease 
beyond the regional lymph node, nasopharyngeal carcinoma, or 
carcinoma of unknown primary with suspected nasopharyngeal 
carcinoma origin (Epstein-Barr positivity or histologic findings) 
were also excluded.

Treatment Protocols
All participants received 70 Gy of radiation in 33–35 frac-
tions over 6–7 weeks to the high-risk volumes, using inten-
sity-modulated RT with image guidance following standard 
institutional practice. Use of concurrent systemic therapy 
was decided by the oncologist. Participation in the study 
did not influence treatment decisions. Following treatment 
completion, response assessment was performed with clini-
cal examination, endoscopy, and imaging with CT, MRI, or 
PET, as decided by the treating oncologists. Participants with 
complete resolution of the primary disease and lymph nodes 

locally advanced breast cancer or radiation therapy (RT) re-
sponse in head and neck squamous cell carcinoma (HNSCC).

HNSCC commonly arises from the epithelial lining of the 
upper aerodigestive system, accounting for major cancer-related 
morbidity and mortality globally (16,17). Radical RT with con-
current chemotherapy is the standard of care for patients with 
locally advanced oropharynx, larynx, and hypopharyngeal HN-
SCC. Fractionated RT is typically delivered over 6 to 7 weeks, 
and the optimal time for response assessment is approximately 
12 weeks following treatment completion, using clinical exami-
nation and morphologic and metabolic imaging (18). However, 
12 weeks after treatment is somewhat late for changing the 
treatment plan, as the treatment has already been administered. 
Consequently, the ability to predict treatment response should 
ideally be as early as possible, either before or during treatment, 
allowing for timely treatment adjustments when necessary. This 
is supported by findings showing that radiation-induced cellular 
events are known to be initiated from the 1st day of RT (19,20). 
Determination of treatment response in real time during RT can 
provide a valuable treatment window including treatment esca-
lation and de-escalation strategies to achieve an optimal balance 
between survival and treatment-induced toxicities (21). Treat-
ment escalation strategies could involve intensifying chemother-
apy regimens, increasing the prescribed dose of radiation, or pre-
scribing different chemotherapy regimens. On the other hand, 
de-escalation strategies include the reduction of radiation dose 
for patients expected to respond very well to treatment. There are 
ongoing clinical trials that attempt to de-escalate radiation treat-
ment for patients with human papillomavirus oropharyngeal 

Abbreviations
AAC = average acoustic concentration, AUC = area under the 
receiver operating characteristic curve, CR = complete response, 
CV = cross-validation, GLCM = gray-level co-occurrence matrix, 
HNSCC = head and neck squamous cell carcinoma, IR = incom-
plete response, LOO = leave one out, MBF = midband fit, QUS 
= quantitative US, RT = radiation therapy, SVM-RBF = support 
vector machines–radial basis function

Summary
A multivariable quantitative US delta-radiomics model using data 
obtained after 1 week of radiation therapy from individuals with 
head and neck squamous cell carcinoma predicted the long-term 
response with reasonable accuracy.

Key Points
 ■ In participants with bulky node-positive head and neck squamous 

cell carcinoma, five quantitative US delta-radiomics parameters 
demonstrated statistically significant differences (P < .05) between 
complete and incomplete response groups.

 ■ The developed multivariable classification model had a balanced 
accuracy of 74% and an area under the receiver operating charac-
teristic curve of 0.77, evaluated using a nested leave-one-out cross-
validation approach.

Keywords
Computer-Aided Diagnosis (CAD), Ultrasound, Radiation 
Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, 
Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine 
Learning
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QUS Spectral Parametric Imaging
A sliding window analysis with a 2 × 2-mm kernel was used 
to create parametric images for each QUS spectral parameter. 
We selected the kernel size to include five to 10 acoustic wave-
lengths for reliable spectral estimation. A 94% overlap was 
used between adjacent windows in both axial and lateral di-
rections. Prior to spectral analysis, individual radiofrequency 
scan lines within the kernel were gated using a Hanning func-
tion. The power spectrum of the sample was estimated using a 
fast-Fourier transform technique. An average power spectrum 
was acquired by averaging several independent adjacent spectra 
from individual radiofrequency scan lines within the window. 
A normalization procedure was applied using a reference phan-
tom technique (23,24). The reference phantom was composed 
of 5–30-μm glass beads embedded in a homogeneous medium 
of oil droplets immersed in gelatin. The measured attenuation 
coefficient and speed of sound of the phantom were 0.8 dB/
cm/MHz and 1540 m/sec, respectively (the University of 
Wisconsin, Department of Medical Physics, Madison). We 
performed an attenuation correction to account for US losses 
along the propagation path. We assumed an attenuation co-
efficient of 1 dB/cm/MHz for the overlying head and neck 
tissues (24,25). The attenuation coefficient estimate for the 
target lymph node was determined using a spectral difference 
method. Spectral normalization and attenuation compensation 
allow parameterization of the tissue microstructures compo-
nent of the radiofrequency spectra. Spectral and lymph node 
scattering parameters were estimated: midband fit (MBF), 
spectral slope, spectral intercept, average scatterer diameter, 
and average acoustic concentration (AAC). QUS spectral para-
metric images provide instrument- and operator-independent 
representations of head and neck cancer nodes that are useful 
for assessing treatment response. The weighted average values 
from all the sections for individual spectral parameters were 
used as first-order imaging features.

Texture Parameters
Quantitative color-coded parametric maps were generated 
based on the individual values of the spectral parameters 
from the individual subregions of interest. A two-dimensional 
texture analysis using the gray-level co-occurrence matrix 
(GLCM) method was performed on the parametric maps with 
the gray level intensity linearly scaled into 16 discrete values 
(26). The GLCM matrices were created from each QUS para-
metric map at interpixel distances of 1, 2, 3, 4, and 5 pixels and 
at four angular directions of 0°, 45°, 90°, and 135°. Four tex-
tural features of contrast, correlation, energy, and homogeneity 
were extracted and subsequently averaged over distances and 
angular directions to generate second-order imaging features 
(QUS-Tex1). Therefore, five spectral parametric maps led to the 
generation of 20 QUS-Tex1 features.

The third-order imaging features represented the texture de-
rivatives (QUS-Tex1-Tex2) (27). The texture-derivative analysis 
was done by creating intermediate texture-encoded maps us-
ing sliding window analysis with a 15 × 15-pixel window, with 
each pixel in these maps representing the quantification of local 
textures within the concerned window. A second-pass GLCM 

smaller than 1 cm (without any high-risk radiologic features 
suspicious for disease involvement) or complete metabolic re-
sponse at PET were considered as having complete response 
(CR) and all others as having incomplete response (IR). The 
latter includes those with partial response, stable disease, or 
progressive disease. Those with IR were followed up with se-
rial imaging, histopathologic examination, or surgical inter-
vention as decided by the multidisciplinary team. In the cur-
rent study, we considered the end point as treatment response 
at 3 months, which was labeled as CR or IR. Three of the 
authors (I.K., I.P., and Z.H.), serving as treating radiation 
oncologists, provided the ground truth of response. They 
identified head and neck nodal targets, planned treatment, 
and followed target response. Each of them has 15–30 years 
of oncology experience in treating head and neck cancers. 
They were completely blinded to the QUS results when deter-
mining the response as CR or IR. We subsequently used these 
radiologist labels as the true labels for supervised learning.

Data Acquisition
The largest metastatic neck lymph node was targeted for QUS 
imaging as decided by the radiation oncologist, guided by 
imaging and clinical examination. We acquired US radiofre-
quency data using a Sonix RP (Ultrasonix) or Elekta imaging 
system prior to RT initiation (preferably within 24 hours of 
starting, up to 7 days prior to RT initiation allowed) and af-
ter 1 week into treatment in a 4-week RT treatment period. 
The systems were equipped with linear-array transducers (So-
nix RP: L14–5/60, Elekta: 4DL14–5/39) of 6.5-MHz trans-
mit frequency and 3–8-MHz bandwidth. The radiofrequency 
signal was digitized using a 40-MHz sampling frequency. A 
research sonographer with more than 5 years of experience 
in head and neck US imaging performed the scan. We col-
lected radiofrequency images in a panoramic scan, where the 
sonographer manually moved the transducer in the elevation 
direction to acquire radiofrequency images traversing the head 
and neck nodes. Each radiofrequency image consisted of 512 
beam-formed A-lines, covering a 6-cm lateral field of view and 
a 4-cm depth. The transmit foci were 1.75 cm and 2.50 cm for 
Sonix RP and Elekta, respectively. From the acquired radiofre-
quency images, we determined sections containing head and 
neck nodes. From this set of elevation sections, we randomly 
sampled three to five representative sections at approximately 
regular intervals for QUS analysis. Manual contouring of the 
target lymph node was performed on these B-mode US images 
to acquire the region of interest. One of the authors (A.D.) 
manually contoured the involved head and neck nodes un-
der the supervision of the three treating radiation oncologists 
(I.K., I.P., and Z.H.). QUS spectroscopy, texture, and texture-
derivate analyses were subsequently performed on the selected 
regions from the target lymph node. We acquired these repre-
sentative features before treatment initiation and after 1 week 
into 6–7 weeks of radiation treatment. We selected the 1-week 
time point, as we consider it sufficient to assess early response. 
A similar QUS-based radiomics study that assessed the early 
response of locally advanced breast tumors to neoadjuvant che-
motherapy also used the 1-week time point (6,13).
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best combination of three features by using forward-sequential 
feature selection based on a balanced accuracy metric. Having 
selected a final model, its generalization performance was fur-
ther evaluated on LOO test data. These predictions were accu-
mulated over all outer LOO folds to obtain a CV estimate of 
prediction error.

We compared the performance of different estimators that 
include linear discriminant analysis, k-nearest neighbors, sup-
port vector machines–radial basis function (SVM-RBF), and 
shallow artificial neural network classifiers. We performed a grid 
search (GridSearchCV function in Scikit-learn) on training data 
to find the optimum set of parameters for each estimator that 
requires externally set parameters. Details on the classifiers have 
been provided extensively elsewhere (31). Appendix S1 details 
the hyperparameters of the machine learning classifiers.

We implemented machine learning routines in Python using 
the Scikit-learn library (28).

Statistical Analysis
We performed statistical analysis using an open source SciPy 
software package. We checked for any statistically significant 
differences between the two groups of responders by using 
either a two-sample t test for normally distributed data or 
a Mann-Whitney U test for nonnormally distributed data. 
The Shapiro-Wilk test was used to assess normality. For a 
statistical test, the threshold for significance was a P value 
of .05 or less.

We quantified model performance using sensitivity, speci-
ficity, balanced accuracy, precision, negative predictive value, 
and area under the receiver operating characteristic curve 

analysis was performed on the texture maps, resulting in 80 
QUS-Tex1-Tex2 features.

The weighted average measures of the features were used for 
building models that predict the response. A total set of 105 
QUS radiomics features (five spectral, 20 QUS-Tex1, 80 QUS-
Tex1-Tex2) were acquired before starting RT and after 1 week 
of treatment. The segmentation, feature extraction, and texture 
analysis were done using MATLAB 2019b (MathWorks).

Prediction Rule Training and Evaluation
We developed a prediction rule that classifies observations into 
one of the two responses: [0, 1] for CR and IR, respectively. 
Figure 1 illustrates the model building and evaluation strategy. 
The preprocessing stage includes data partitioning for nested 
cross-validation (CV) and feature scaling. We divided the 
whole data set into outer leave-one-out (LOO) folds (n = 55). 
In each fold, the LOO observation was reserved in a “vault,” 
serving as test data. Model development and validation were 
performed on the remaining n-1 observations. We performed 
feature standardization on training data by using the Robust-
Scaler class (28). Test data were scaled using the same scaling 
computed from training data. A subset of 50 “good” features 
was selected based on minimum redundancy maximum rel-
evance criterion (29). Subsequently, data balancing was per-
formed on reduced training data by using a synthetic minority 
oversampling technique (30).

In each outer LOO fold, we constructed inner LOO folds 
to train and validate the model. Classification models were fit-
ted on balanced reduced training data. Model performance was 
evaluated on validation data by using LOOCV. We selected the 

Figure 1: Model building and evaluation strategy. We created n external leave-one-out cross-validation (LOOCV) partitions from all samples. 
For each fold, we have n-1 samples for model development and a single LOO test sample, which we kept hidden for final model evaluation. From 
the n-1 samples, we created n-1 internal LOOCV partitions, where we fitted a classifier model on the n-2 samples and evaluated its performance 
on an out-of-sample LOO validation sample. We fitted n-1 models each time on different n-2 samples and eventually averaged the prediction 
score from all the n-1 LOO test samples. We chose the final model as one that resulted in the highest average validation performance. The selected 
model then predicts the output of the previously hidden LOO test sample. This provides an objective assessment of model performance in production, 
when predicting new unseen samples. This strategy is robust against overfitting especially when dealing with data in the limited sample regimen, as 
indicated by Vabalas et al (40). This strategy effectively uses n-2 training samples (highlighted in green) for fitting a classifier, one validation sample 
(highlighted in yellow) for selecting a model and its hyperparameters, and one test sample (highlighted in red) for assessment of model generaliza-
tion beyond the development samples. Model development that includes feature standardization, filter-based feature selection, data balancing, and 
wrapper-based feature selection utilized n-2 training samples. Model selection and hyperparameter optimization were based on the average LOO 
validation set performance. Subsequently, we tested the final selected model on each LOO test sample. We aggregated the prediction scores from 
all LOO test samples to produce the final test confusion matrix, from which classification metrics can be derived.
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[IQR: 39–79 years]). The clinical and treatment 
characteristics are presented in Table 1 and Table 
S1. To summarize, 53 participants were male and 
two were female; the primary tumor sites were the 
oropharynx (n = 39), larynx (n = 6), hypopharynx 
(n = 3), and carcinoma of unknown primary (n 
= 7). Human papillomavirus p16 immunostaining 
results were available in 42 participants, of which 
36 had positive findings. A number of participants 
were concurrently administered systemic therapy, 
with 45 participants undergoing concurrent che-
motherapy. On the other hand, two participants 
were treated with cetuximab for concurrent immu-
notherapy. We found no evidence of a difference 
in certain clinical characteristics, including age, 
sex, primary tumor site, primary tumor, and nodal 
stages among the response groups. With a median 
follow-up of 32 months (IQR: 18–47 months), 
2-year recurrence-free survival rate for complete 
responders and incomplete responders was 100% 
and 59%, respectively (P < .01). The 2-year overall 
survival rate for the participants with CR and IR 
was 100% and 82%, respectively (P = .03). A per-
participant summary is provided in Table S1.

Feature Analysis
Figure 2 presents representative B-mode US images 
and parametric images of average scatterer diam-
eter, AAC, MBF, spectral slope, and spectral inter-
cept for one participant each from the CR and IR 
groups. The changes within the region of interest 
(lymph node) can be appreciated at visual evalua-
tion after 1 week of RT, suggesting the differences 
in scatterer properties induced by the treatment. 
At the end of 1 week, five features demonstrated 
statistically significant differences between the 
two response groups. These include one spectral 
(change in the mean value of the AAC map), one 
texture (change in the energy texture of the AAC 
map), and three texture-derivative (change in the 
correlation texture of the contrast map of MBF, 
change in the contrast texture of the contrast map 
of MBF, change in the correlation texture of the 
homogeneity map of MBF) features (Table 2). A 

diagrammatic representation of the normalized feature values 
for all the participants from pretreatment to week 1 is shown 
in Figure 3.

Classification Performance
Performances using the different machine learning classifiers 
before treatment and after 1 week of RT are summarized in 
Table 3. Before the treatment initiation, performances were 
roughly equivalent independent of the classifier used. The best 
performances were obtained using the SVM classifier, with 
sensitivity, specificity, balanced accuracy, and AUC of 82%, 
80%, 81%, and 0.82, respectively. For all the classifiers, the 

(AUC) metrics. Validation and test performances are presented 
as described below.

We performed survival analysis using the Kaplan-Meier 
method. The date of starting RT was considered to be the start 
of survival time.

Results

Clinical Characteristics and Treatment Outcomes
A total of 55 participants were included in the study, with 
21 complete responders (median age, 65 years [IQR: 47–80 
years]) and 34 incomplete responders (median age, 59 years 

Table 1: Clinical Characteristics and Treatment Outcomes for the 
Two Response Groups

Parameter
Complete Response
(n = 21)

Incomplete Response
(n = 34)

Age (y)* 65 (47–80) 59 (39–79)
Sex
 Male 20 33
 Female 1 1
Primary site
 Oropharynx 14 25
 Larynx 3 3
 Hypopharynx 2 1
 CUP 2 5
T stage
 T0 2 5
 T1 7 5
 T2 4 11
 T3 2 5
 T4 6 8
N stage
 N1 10 12
 N2 10 14
 N3 1 8
Concurrent therapy
 Cisplatin 16 25
 Carboplatin 1 2
 Cisplatin, followed by car-

boplatin
0 1

 Cetuximab 1 1
 None 3 5
2-year RFS rate (%) 100 59
2-year OS rate (%) 100 82
Node size after 1 week into 

treatment (mm)†
50.4 ± 10.5 55.0 ± 12.1

Note.—Unless otherwise specified, data are numbers of participants. CUP = 
carcinoma of unknown primary, OS = overall survival, RFS = recurrence-free 
survival.
* Values are medians, with ranges in parentheses.
† Values are means ± SDs.

http://radiology-ic.rsna.org
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performance increased when the delta (Δ) features were in-
cluded after 1 week of RT. On a test set with limited data after 
the 1st week of RT, the best-performing classification mod-
els using baseline features achieved sensitivity, specificity, bal-
anced accuracy, and AUC values of 67% (14 of 21), 71% (24 
of 34), 69%, and 0.73 (95% CI: 0.58, 0.87), respectively. The 
best-performing classification models using changes in features 
from week 0 to week 1 achieved sensitivity, specificity, balanced 
accuracy, and AUC values of 71% (15 of 21), 76% (26 of 34), 
74%, and 0.77 (95% CI: 0.63, 0.90), respectively. Models 
developed using linear discriminant analysis and SVM-RBF 
classifiers performed comparably at both baseline and week 1. 
Models developed using imaging features early into treatment 
performed better in predicting head and neck nodal response 

to radiation treatment compared with their baseline model 
counterparts. Figure 4A represents the two response groups, 
using a set of three Δ features, suggesting visually evident dif-
ferent values between participants with CR and IR. Figures 4B 
and 4C show the receiver operating characteristic plot using 
the four machine learning classifiers on the validation and test 
sets, respectively.

Discussion
RT is the primary treatment modality in patients with HN-
SCC having primary sites in the oropharynx, hypopharynx, 
and larynx (17). Although treatment-related cell death is ex-
pected to start from the initiation of RT, the final response is 
manifested from cumulative cell death. The standard treat-

Figure 2: Representative B-mode US and quantitative US (QUS) spectral parametric images of average scatterer diameter (ASD), 
average acoustic concentration (AAC), midband fit (MBF), spectral slope (SS), and spectral intercept (SI) in one participant (a 74-year-old 
woman) with complete response (left two columns) and one participant (a 61-year-old man) with incomplete response (right two columns) 
acquired at baseline (before radiation therapy) and after week 1 of radiation therapy. QUS parametric images include the largest involved 
cervical lymph node (central region bounded by closed dotted white curve). The color bar range is 160 µm for ASD, 130 dB/cm3 for AAC, 
40 dB for MBF, 12 dB/MHz for SS, and 75 dB for SI. The scale bar represents 1 cm.

http://radiology-ic.rsna.org
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Table 2: Delta Features after Standardization Preprocessing with Statistically Significant 
Differences between Participants with Complete Response and Incomplete Response

Feature Complete Response Incomplete Response P Value

ΔMBF-CON-COR −0.73 ± 0.17 0.26 ± 0.16 <.001
ΔMBF-CON-CON 0.45 ± 0.22 −0.45 ± 0.15 .001
ΔMBF-HOM-COR −0.63 ± 0.17 0.20 ± 0.17 .002
ΔAAC-ENE −0.20 ± 0.25 0.21 ± 0.15 .047
ΔAAC 0.18 ± 0.17 −0.41 ± 0.18 .049

Note.—Unless otherwise noted, values are means ± standard errors of the means. ΔAAC = change in mean 
value of average acoustic concentration map, ΔAAC-ENE = change in energy texture of average acoustic 
concentration map, ΔMBF-CON-CON = change in contrast texture of contrast map of midband fit, 
ΔMBF-CON-COR = change in correlation texture of contrast map of midband fit, ΔMBF-HOM-COR 
= change in correlation texture of homogeneity map of midband fit.

Figure 3: Changes of the mean feature values for parameters with statistically significantly different values between participants with complete response 
(gray) and incomplete response (black) after 1 week of radiation therapy. The feature estimates for the two response groups have been normalized to the 
same value before starting radiation therapy, and the relative changes in the mean parameter values with 95% CIs are indicated at a week 1 time point. The 
representative features include ΔAAC (change in the mean value of average acoustic concentration map), ΔAAC-ENE (change in the energy texture of 
average acoustic concentration map), ΔMBF-CON-CON (change in the contrast texture of contrast map of midband fit), ΔMBF-CON-COR (change in 
the correlation texture of contrast map of midband fit), and ΔMBF-HOM-COR (change in the correlation texture of homogeneity map of midband fit). A.U. = 
arbitrary units.
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ment includes a fractionated course of RT over several weeks, 
with response evaluation carried out typically 3 months after 
treatment completion. Developing an appropriate biomarker 
to detect treatment response during the early phase of RT in 
real time forms a strategy that could be used to adopt per-
sonalized radiation regimens. QUS is an inexpensive portable 
imaging modality able to help detect the underlying tissue 
microstructural elastic properties. In the current study, the 
work has demonstrated the ability of a Δ-radiomics model 
from QUS imaging of metastatic lymph nodes after 1 week 
of treatment to predict treatment response after 3 months of 
RT completion.

In the past decade, substantial research has been directed 
toward the development of noninvasive biomarkers by using 
quantitative analytics of imaging aided by artificial intelligence 

(3). For patients with head and neck malignancies, radiomics 
analysis has been used more commonly with imaging modali-
ties like MRI, CT, and PET and less commonly with US, with 
clinical end points like prognostication, molecular character-
istics, and survival prediction (32,33). In a multicentric study, 
CT radiomics features were able to predict human papilloma-
virus status in patients with oropharyngeal squamous cell car-
cinoma (34). Several studies have demonstrated the ability of 
quantitative analysis of CT and PET imaging features to help 
predict recurrence and survival in patients with head and neck 
cancer (35–37). Similarly, MRI radiomics have demonstrated 
value in the prognostication of patients with HNSCC, with a 
major share of such studies performed in nasopharyngeal cancer 
(38,39). Although survival outcomes or probabilities of recur-
rence are commonly studied end points in radiomics studies 

Table 3: Validation and Test Performances of Classifiers before Treatment and at Week 1 of Radiation Therapy

Classifier Sensitivity (%) Specificity (%) Balanced Accuracy (%) AUC* PPV (%) NPV (%)

Validation Performance

Baseline
 LDA 76 ± 5 79 ± 3 77 ± 3 0.76 ± 0.02 69 ± 4 84 ± 3
 KNN 82 ± 7 77 ± 5 79 ± 4 0.79 ± 0.04 69 ± 4 88 ± 4
 SVM-RBF 82 ± 7 77 ± 7 79 ± 2 0.79 ± 0.03 69 ± 5 88 ± 4
 ANN 79 ± 7 80 ± 4 79 ± 4 0.83 ± 0.05 71 ± 4 86 ± 4
Week 1
 LDA 79 ± 4 80 ± 3 80 ± 2 0.81 ± 0.02 71 ± 3 86 ± 2
 KNN 83 ± 6 80 ± 6 81 ± 4 0.81 ± 0.04 72 ± 6 88 ± 4
 SVM-RBF 82 ± 4 80 ± 4 81 ± 2 0.82 ± 0.02 72 ± 4 88 ± 2
 ANN 82 ± 7 80 ± 5 81 ± 3 0.83 ± 0.05 72 ± 4 88 ± 4

Test Performance
Baseline
 LDA 67 (14/21) 71 (24/34) 69 0.71

(0.56, 0.86)
58 (14/24) 77 (24/31)

 KNN 71 (15/21) 65 (22/34) 68 0.65
(0.50, 0.81)

56 (15/27) 79 (22/28)

 SVM-RBF 67 (14/21) 71 (24/34) 69 0.73
(0.58, 0.87)

58 (14/24) 77 (24/31)

 ANN 43 (9/21) 62 (21/34) 52 0.59
(0.44, 0.75)

41 (9/22) 64 (21/33)

Week 1
 LDA 71 (15/21) 76 (26/34) 74 0.75

(0.61, 0.89)
65 (15/23) 81 (26/32)

 KNN 71 (15/21) 62 (21/34) 67 0.69
(0.54, 0.84)

54 (15/28) 78 (21/27)

 SVM-Linear 71 (15/21) 76 (26/34) 74 0.77
(0.63, 0.90)

65 (15/23) 81 (26/32)

 ANN 52 (11/21) 71 (24/34) 61 0.67
(0.52, 0.82)

52 (11/21) 71 (24/34)

Note.—Unless otherwise noted, data are presented as means ± SDs across leave-one-out folds in the development set (validation perfor-
mance) and percentages, with numerators and denominators in parentheses, in the test set (test performance). ANN = artificial neural net-
work, AUC = area under the receiver operating characteristic curve, KNN = k-nearest neighbor, LDA = linear discriminant analysis, NPV = 
negative predictive value, PPV = positive predictive value, SVM-RBF = support vector machines–radial basis function.
* Data in parentheses are 95% CIs.
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involving HNSCC, quantitative imaging for the evaluation of 
response to RT has been seldom reported.

QUS spectroscopy transforms time-domain radiofrequency 
data into its spectral-domain representation, enabling the ex-
traction of quantitative parameters that provide more detailed 
microstructural information compared with standard sonogra-
phy. With direct analysis of the normalized power spectrum ob-
tained from the target region, the biophysical properties of the 
tissues provide enriched information that can be strongly linked 
with clinical outcomes. The mechanical properties of the tissue 
are dependent on several factors like cell size, shape, diameter, 
and arrangement, which are represented by different QUS pa-
rameters (4,6). Earlier studies have shown the ability of QUS 
features obtained before initiation of treatment in predicting 
the response to neoadjuvant chemotherapy in locally advanced 
breast cancer or response to RT for patients with HNSCC 
(7,8,10). Also, pretreatment QUS radiomics models have been 
able to predict the risk of recurrence in patients with breast and 
head and neck malignancies (9,15). The ability of baseline QUS 

features to determine the clinical course before the initiation of 
treatment provides evidence for the relation of different tissue 
microstructural elastic properties with biologic behavior. With 
the initiation of cancer-directed treatment like chemotherapy or 
RT, changes induced by cell death start within the tumor mi-
croenvironment, leading to morphologic changes such as cell 
fragmentation, pyknosis, and apoptosis. Preclinical studies have 
demonstrated the ability of QUS parameters to effectively deter-
mine the changes in the physical properties of the cellular and 
nuclear architecture induced by treatment results in changes in 
the scatterer properties (12). In clinical studies involving breast 
and head and neck malignancies, QUS features obtained dur-
ing the early course were shown to improve classification perfor-
mances of the radiomics model (13,14).

In the current study, we used a Δ-radiomics model incor-
porating QUS features, obtained 1 week after RT, from meta-
static neck nodes in participants with HNSCC scheduled for 
a 7-week course of RT treatment. Five of the imaging features 
were observed to have a significant difference in values in the 

Figure 4: (A) Scatterplots in three-dimensional plane using three delta quanti-
tative US features: ΔMBF-CON-COR (change in the correlation texture of contrast 
map of midband fit), ΔMBF-CON-CON (change in the contrast texture of contrast 
map of midband fit), and ΔMBF-HOM-COR (change in the correlation texture of 
homogeneity map of midband fit). Red circles show the participants with complete 
response (CR), while blue triangles represent those with incomplete response (IR). 
(B, C) Receiver operating characteristic plots for the radiomics models using dif-
ferent machine learning classifiers for the validation and test set, respectively. The 
classifiers included LDA, KNN (k = 3), SVM-RBF, and a shallow ANN. ANN = 
artificial neural network, A.U. = arbitrary units, AUC = area under the receiver op-
erating characteristic curve, KNN = k-nearest neighbors, LDA = linear discriminant 
analysis,  SVM-RBF = support vector machine–radial basis function. 
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two response groups (CR and IR) after the 1st week of treat-
ment. The changes in AAC, one texture feature of AAC (AAC-
energy), and three MBF texture-derivative features turned out 
to have different trajectories after treatment initiation. The AAC 
parameter is influenced by the scatterer number density and 
organization, while the MBF is dependent upon scatterer size, 
shape, number, and organization (4,6). In an earlier study, we 
demonstrated the improved performance of a QUS radiomics 
model in a limited number of individuals (n = 36) using feature 
values after the 1st and 4th week of RT (14). The current study 
included a larger number of individuals (n = 55), and higher-
dimensional texture features in the form of texture derivatives 
were extracted. Previous studies showed the improvement of 
classification indexes with the inclusion of texture-derivative 
features as opposed to QUS spectral and texture features alone, 
suggesting better representation of tumor heterogeneity with the 
use of higher-order imaging features (8,27). Univariate assess-
ment of features for any statistically significant difference neces-
sitates correction to mitigate the increased risk of false-positive 
findings, especially when a large number of features are involved. 
Still, univariate assessment of feature quality does not necessarily 
predict the performance of multivariate models. A combination 
of features with less discriminating power can still produce a rea-
sonable generalization performance.

When dealing with small biomedical data sets of cancer im-
ages from the real world, it is imperative to implement an ap-
propriate model building and evaluation strategy (40). Here, we 
employed a nested LOOCV analysis, allowing the separation of 
observations for model development and testing. As we acquire 
more data, we will be able to implement development-test parti-
tioning that leaves out 10%–30% of samples for testing. Tumors 
are heterogeneous and vary from patient to patient in terms of 
certain structural features and often have necrotic areas or areas 
of variable histologic features. In the limited data regimen, the 
implementation of a holdout set of 10%–30% would not be 
appropriate due to the effect of data granularity that can make 
certain important characteristics underrepresented in the devel-
opment set. A nested LOO analysis guarantees that most of the 
limited available samples are used for model building, while at 
the same time preserving the strict requirement of out-of-sample 
data for the objective evaluation of model performance.

On the other hand, in the large data regimen, such as when 
n is approximately several hundred samples, the use of LOOCV 
will require excessive computational resources, as several hun-
dred LOO partitions require evaluation. In this regimen, a hold-
out validation approach is best, as data granularity effect will be 
less prominent. Subsequently, it is necessary to test the feasibility 
of the framework on a multicentric data set. Previous studies 
have demonstrated the robustness of the QUS spectroscopy and 
texture framework to US system variations and multi-institu-
tional data (41,7,13).

This study demonstrates that changes in radiomics fea-
tures early in the treatment process can be used to construct 
a response-predictive model with good generalization per-
formance. Our results should encourage further studies to 
evaluate the proposed framework on larger patient cohorts. 
The response-predictive model was built by representing the 

characteristics of QUS spectral parametric images of the head 
and neck nodes with first-order mean and GLCM-based tex-
ture analyses. Future work will involve analyzing a full set of 
radiomics features, including features beyond first-order mean 
and GLCM-based textures, such as other first-order statistics 
features, morphologic features, and different methods for 
quantifying image texture. As we collect more samples, we will 
be able to apply more advanced models, such as convolutional 
neural networks and vision transformer models, as generic fea-
ture extractors to directly learn important characteristics from 
QUS spectral parametric images of the head and neck nodes 
are essential for predicting treatment response. We believe that 
both traditional machine learning with a comprehensive set of 
radiomics features and deep learning approaches can lead to 
even better generalization performance.

A recent study has demonstrated the use of contrast-en-
hanced US for characterizing breast lesions (42). Contrast-
enhanced harmonic and subharmonic imaging allow the 
analysis of vascular heterogeneity and perfusion, which are 
useful for distinguishing malignant from benign breast tu-
mors (42). A similar strategy can potentially be implemented 
for assessing treatment responses in head and neck nodes. 
The characterization of node vasculature can add a distinct 
dimension in representing head and neck nodes, potentially 
benefiting treatment assessment.

The ability to detect tumor response to real-time RT early 
in the course of treatment provides a window of opportunity 
for personalized RT. Treatment modifications can be pursued on 
an individual basis, depending on the anticipated response. This 
may involve treatment escalation for refractory disease or treat-
ment de-escalation for radiosensitive disease, aiming to strike an 
optimal balance between cure and treatment-related toxicity.

The current study had several limitations, including the rela-
tively small cohort size and the single-institutional nature of the 
data. The feasibility of the QUS spectroscopy framework has 
been demonstrated for the diagnosis and prognosis evaluation of 
different tumors in a larger cohort (43,44,8). However, we still 
need to perform a similar large-scale analysis for the QUS-based 
radiomics study of head and neck cancers. In this preliminary 
study, we have demonstrated that the QUS spectral and texture 
representation of head and neck cancer can be utilized to build a 
response prediction model with a balanced accuracy of 74% and 
an AUC of 0.77 evaluated on the test data.

In conclusion, this prospective observational study demon-
strated the potential of a Δ-radiomics model, utilizing QUS 
spectral and textural features from metastatic neck nodes in 
participants with HNSCC, collected after the 1st week of radi-
cal RT, for predicting treatment response. Notably, the AAC 
and MBF QUS parameters exhibited significant changes after 
the 1st week of RT in participants with either a CR or an IR 
3 months after treatment completion. These promising results 
have spurred further ongoing research, aiming to involve a larger 
patient cohort. This expanded data set will enable the develop-
ment of a more robust radiomics model, laying the foundation 
for future interventional studies. While the primary tumor was 
not imaged in this study because of its deep-seated location and 
potential air-tissue interface influences on QUS parameters, the 
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higher-dimensional radiomics features extracted from the lymph 
node were effective for predicting treatment responses.
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