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Simple Summary: Treating head and neck cancers is challenging due to the complex anatomy
and often late-stage diagnosis. Early symptoms can be misattributed to those associated with
common ailments like the flu, and unsurprisingly, many patients already have lymph node (LN)
involvement by diagnosis. Treatment options include radiation and chemotherapy; nevertheless,
there remains a subset of patients for whom these treatments fail to adequately reduce tumor size. In
this investigation, phenotypic insights regarding treatment outcomes from pathologically involved
LNs were explored and “mined” as radiomics features. Said features were used to train machine
learning (ML) classifiers, enabling the identification of informative feature combinations and the
prediction of treatment outcomes. Moreover, iterative deep texture analysis (DTA) was explored to
evaluate deeper-layer radiomics features and proved useful for further enhancement of predictive
models. Robust generalized models could enhance personalized cancer care, and the preliminary
results in this work support further research into radiomics-trained predictive models and DTA to
boost performance.

Abstract: Background: Head and neck cancer treatment does not yield desired outcomes for all
patients. This investigation aimed to explore the feasibility of predicting treatment outcomes from
routine pre-treatment magnetic resonance images (MRIs). Radiomics features were “mined” and
used to train machine learning (ML) classifiers to predict treatment outcomes. Moreover, iterative
deep texture analysis (DTA) was explored to boost model performances. Methods: Radiomics features
were determined from T1-weighted post-contrast MRIs of pathologically involved lymph node (LN)
segmentations for n = 63 patients. SVM, k-NN, and FLD classifier models were trained, selecting for
1–10 features. The model with the top balanced accuracy was chosen for an iteration of DTA. New
feature sets were used to retrain and test the ML. Radiomics features were explored for a total of
three layers through two iterations of DTA. Results: Models proved useful in predicting treatment
outcomes. The best model was a nine-feature multivariable k-NN model with a sensitivity (%Sn)
of 93%, specificity (%Sp) of 74%, 86% accuracy (%Acc), and 86% precision (%Per). The best model
for two of the three classifiers (k-NN and FLD) was trained using features from three layers. The
performance of the average k-NN and FLD models trained with features was boosted significantly
with the inclusion of deeper-layer features. Conclusions: Pre-treatment LN MRIs contain quantifiable
texture information that can be used to train ML models to predict cancer treatment outcomes.
Furthermore, DTA proved useful to boosting predictive models.

Keywords: radiomics; deep texture analysis; cancer treatment; response prediction; machine learning
prediction; texture features; head and neck cancer; texture of texture
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1. Introduction

Pattern recognition is among of a plethora of intricate cognitive capabilities that
has evolved over thousands of years, by encoding and integrating information acquired
from environmental sensory inputs, to guide behavioral responses [1]. Some pattern
processing functions—like the ability to create cognitive maps of physical environments
and to distinguish individuals of the same species and the use of gestures to communicate
with other individuals—are common among many animal species, whereas others—like
creativity and invention, spoken and written language, imagination and comprehension
of the passing of time—are uniquely human, in large part due to relatively large size of
the cerebral cortex [1]. Specifically for visual information, photoreceptors in the retina
activate in response to incoming light, and details are transiently encoded in nerve cell
circuits of the visual regions of the cerebral cortex, which are then transferred and stored
in the hippocampus [1]. As a result of this evolutionary development, humans have an
innate ability to recognize and empirically describe textural properties (coarseness, rippling,
contrast, etc.) associated with visual inputs. In 1973, with advancements in computing
and digital photography, Haralick et al. foreshadowed the need and potential utility in
quantifying textural characteristics of an image and pioneered the field of radiomics by
publishing a seminal work defining a process to calculate a set of features from an image [2].
Based on the assumption that the textural information of images is contained in the overall
or “average” relationship of pixel intensities within the image, Haralick et al. computed
a spatially dependent probability–distribution matrix based on grayscale intensities of
neighboring pixels, in what is called a gray-level co-occurrence matrix (GLCM), and defined
features based on said matrix [2]. From that work, other matrices have been developed to
quantify relationships between image pixels, including the gray-level run length matrix
(GLRLM) [3], the gray-level size zone matrix (GLSZM) [4], and the gray-level dependence
matrix (GLDM) [5], all with distinctly defined features. Features can be calculated for entire
images or for regions of interest (ROI) within an image.

Modern personalized medicine is emerging in parallel with advancements in biomedi-
cal imaging, unlocking visual insights beyond what is accessible to the naked eye. Obser-
vation of internal anatomy with medical imaging allows physicians to better understand
the nature of diseases, plan treatment, and monitor treatment efficacy. Current cancer care
standard protocols involve the acquisition of a biopsy sample from the suspected diseased
tissue for up-front genetic profiling and confirmation of cancer. However, three major
hurdles limit potential, namely: (i) acquiring a biopsy sample is an invasive procedure for
patients, and (ii) samples can ultimately fall short in adequately characterizing the entirety
of a suspicious mass, which is crucial, considering genetic, anatomic, and physiological
heterogeneity drastically influences cancer growth and treatment outcomes [6,7]; and (iii)
clinically validated biological biomarkers have yet to be established for most cancer types.
Globally, considerable resources are directed towards researching the role tumor composi-
tion and microenvironments play with respect to treatment outcomes, disease progression,
metastasis, recurrence, and more [6,8,9].

In contrast to biopsies, radiomic analysis of suspect masses presents a few noteworthy
potential advantages; mainly, (i) it presents a potential method of characterizing the entirety
of a region in question, (ii) it is non-invasive, (iii) it allows clinicians to maximize the utility
of often previously acquired images (computed tomography (CT) and magnetic resonance
imaging (MRI), in particular) required for qualitative diagnostic and treatment planning
purposes, (iv) it can be applied to multiple masses within a single patient, and (v) it can be
used at different time points, providing longitudinal data such as treatment response over
time [10]. Theoretically, radiomics features could reveal promising imaging biomarkers
associated with numerous biological and clinical conditions of interest. The identification
and combining of meaningful features to distinguish between populations of interest (for
example, recurrence, metastasis, treatment efficacy, etc.) is a task that can be carried out
by common machine learning (ML) classifiers after labeling the “mined” textural features
with known outcomes and training predictive models [11].
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Epithelial malignancies originating in the oral cavity, pharynx, larynx, paranasal
sinuses, nasal cavity, and salivary glands are broadly categorized as head and neck (H&N)
cancers [12], approximately 90% of which are squamous cell carcinomas (SCC) [13]. A
25-year-long analysis of cancers in Canada, published in 2022, revealed that the vast
majority (~35,000 or 70%) of roughly 48,000 incidences of H&N cancers occurred in male
subjects [14]. Tobacco and alcohol consumption [15–17], human papilloma virus (HPV)
infection [18], and p53 and p16 gene mutations [19,20] are risk factors that make H&N
cancers the seventh most common type of cancer [18]. The World Health Organization’s
International Agency for Research on Cancer estimated globally—in the year 2020—there
would be in excess of 900,000 newly diagnosed H&N cancer patients, and just under
500,000 individuals would succumb to complications of H&N cancer [14]. Though distant
metastasis is rare at the time of diagnosis (~10%), the majority of HPV-related cancer
patients exhibit regional spread of cancerous cells to lymph nodes (LN) by the time of
diagnosis [12]. Five-year mortality rates are approximately 50% but vary depending on
clinical factors such as the primary site of disease, tumor stage, and HPV status, as well
as non-clinical factors like geographical and socioeconomic status influencing access to
healthcare [21,22]. It is worth noting that these statistics and estimations do not take into
account the impact of the COVID-19 pandemic, which should not be underestimated. One
study on the impact of the COVID-19 pandemic on H&N cancer diagnosis and treatment
reported a decrease in the proportion of H&N patients with early-stage diagnosis, with
authors positing these trends to be associated with patients’ unwillingness to visit a doctor
during uncertain times or lack of access [23].

Treatments for H&N cancer are multimodal and may involve a combination of surgery,
radiotherapy (RT), and or systemic therapy, depending on factors related to the tumor
and the patient, including tumor site, stage, operability, and patients’ overall health.
A typical up-front RT prescription consists of 70 Gy to the areas containing gross dis-
ease, 63 Gy to intermediate-risk areas (i.e., areas adjacent to the gross tumor volume
[GTV]), and 54–56 Gy to low-risk areas (i.e., elective treated nodal regions), delivered in
33–35 fractions [24]. It is worth noting that the complexity of H&N cancers, which may orig-
inate in a number of sub-sites, warrant precise considerations and oncological approaches
both for treatment planning and recovery [25]. Despite the shift towards personalized
medicine and advancements in precise RT delivery techniques, such as newer treatment-
planning software, improved imaging methods, and innovations like intensity-modulated
radiation therapy (IMRT) [26] and volumetric-modulated arc therapy (VMAT) [27], there
remains a subset of patients who do not respond to treatment and experience tumor re-
sistance to treatment or recurrence. Therefore, having reliable and robust predictions
regarding the probability of tumor response to radiotherapy is potentially valuable for
tailoring treatment and improving results. For instance, treatment de-escalation, including
reductions in dose or treatment volume, could be considered for patients predicted to
exhibit complete responses to radiation, and those predicted to have poor responses could
be offered treatment intensification.

Based on a working hypothesis that index LNs (detailed in methods) of H&N cancer
patients exhibit phenotypic signals associated with treatment efficacy, the aim in this study
was (i) to determine the feasibility of predicting tumor response to up-front RT by building
predictive ML models trained using pre-treatment MRI radiomics features from index
LN segmentations, (ii) to identify top-k features, and (iii) to test previously developed
deep texture analysis (DTA) methodology to improve feature sets and enhance predictive
capabilities. In short, DTA is an iterative process to investigate the spatial distributions of
top-k features by creating feature map images and subsequently “mining” deeper-layer
texture features from said feature maps. Previously, DTA methodology has shown promise
in predicting H&N cancer treatment outcomes with index LN quantitative ultrasound
spectroscopic (QUS) parametric maps [28] and treatment-planning CT scans [29], but this
was yet explored on MRI images (to our knowledge). Figure 1 presents a graphical abstract
for the DTA methodology.
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Figure 1. Graphical summary of the workflow presented in this study. The three main stages included
radiomic feature extraction, the creation of ML models, and the iterative DTA method, which was
carried out two times in this work, to extract features from three total layers.

2. Materials and Methods

This constitutes an analysis of a prospective cohort of patients with biopsy-proven
de novo cT0-4N1-3M0 primary H&N cancer who underwent a standard course of up-
front radiotherapy with 70 Gy in 33–35 fractions, with or without concurrent chemother-
apy, between 2015 and 2020 (ClinicalTrials.gov (accessed on 11 June 2024), identifier:
NCT03908684). For the purpose of this current study, we included a subgroup of patients
from that cohort who had enlarged regional lymph nodes measuring ≥15 mm in short axis,
as assessed by CT scan, and underwent baseline magnetic resonance imaging at the time
of diagnosis or radiation planning [30], while excluding patients whose MRI contained
motion and dental artifacts.

ClinicalTrials.gov
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As mentioned earlier, radiomics models for this patient cohort were trained using US
and CT scans and published previously [28,29]. Recruiting patients for the acquisition of US
scans—which are not part of the standard treatment pipeline—solely for scientific research
purposes proved challenging and limited the number of participants to n = 63. The main
objective of this study was to create machine learning algorithms using baseline MRI texture
features determined from the index regional lymph node for predicting complete response
three months after radical intent radiation therapy. This is a single-institution study
conducted at Sunnybrook Health Sciences Center (Toronto, ON, Canada) and approved by
the Research Institute Ethics Board (SUN-3047).

2.1. Treatment Approach and Follow-Up Imaging

Patients were treated with radical intent definitive up-front radiotherapy. Contouring
and treatment plans were made in line with institutional guidelines and in accordance
with standard practice. As part of patient clinical care for radiation treatment planning, the
primary and lymph node gross tumor volumes (GTV) were contoured by a clinical team on
planning CT scans, co-registered with diagnostic or planning magnetic resonance imaging
data that were acquired from a 1.5 T Philips Ingenia Elition X (Philips Medical Systems,
Amsterdam, Netherlands) device [30]. The typical contouring approach consisted of
(i) expanding the GTV by 3–5 mm to generate the high-dose clinical target volume (CTV)
and further expanding it by 5 mm to generate the high-dose planning target volume (PTV);
(ii) expanding the GTV by 10 mm and including the elective nodal regions to generate
the low-dose CTV. The contouring of an intermediate-risk CTV was at the physician’s
discretion. The PTV margins consisted of a 5 mm expansion of the respective CTVs. A
typical prescription included 70 Gy to the PTV high-risk, 63 Gy to the intermediate-risk,
and 56 Gy to the low-risk PTV, delivered in 33–35 fractions. RT was administered using
IMRT or VMAT techniques, and cone-beam CT scans were used to verify and adjust the
patient’s position before each radiation fraction [30].

After completing treatment, patients were regularly monitored according to institu-
tional clinical guidelines. The standard follow-up regimen typically included physical
examinations and restaging imaging every 3 months during the first year post-treatment,
every 4 months in the second year, every 6 months in the third year, and annually during
years 4 and 5. The initial restaging imaging modality was MRI, and in the case of a complete
response, CT scans were performed subsequently.

2.2. Tumor Response Definition and Segmentation

Tumor response was assessed for the primary tumor and regional lymph nodes on the
3-month follow-up contrast-enhanced magnetic resonance imaging following radiotherapy
completion and was based on the Response Evaluation Criteria in Solid Tumors (RECIST)
1.1 criteria [31]. In brief, complete response (CR) was defined as disappearance of the
primary tumor and reduction of the involved lymph nodes in short axis to less than
10mm, whereas partial response (PR) was defined as at least a 30% decrease in the sum
of diameters of tumors compared to the baseline MR imaging. The protocol outlined
evaluation of patients that exhibited stable and progressive disease as well, but the cohort
included no such instances and was thus not worth detailing in this methodology.

Radiation oncologists with over 5 years’ experience (DMP, IP, IR or AB) used pre-
treatment T1-weighted post-contrast MRI for manual segmentation of the region of interest
(ROI) in a radiation planning system (Pinnacle, Philips Medical System) that was copied for
analysis using open-source software ITK-SNAP (version 3.6.0, www.itksnap.org (accessed
on 11 June 2024) [32]). The ROI consisted of the largest affected regional lymph node, and
when multiple lymph nodes were closely adjacent or formed a conglomerate, all were
included into the ROI.

www.itksnap.org
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2.3. Texture Extraction and Machine Learning Algorithms

LN segmentation ROIs were used as a mask with associated MRI scans. In order to
account for varying and arbitrary pixel intensities between scans, images were normalized
by normalizing values to the mean with one standard deviation of pixel values in the whole
image [33]. Subsequently, 24 GLCM, 16 GLRLM, 16 GLDM, and 14 GLSZM 2D 1st-layer
texture features (1LTFs) were calculated (as an S1 feature-set) from axial slices using Pyra-
diomics version 3.0.1, an open-source Python (Python Software Foundation, Wilmington,
DE, USA, version 3.7.10) package [33]. Lastly, before proceeding to ML model building,
radiomics features were concatenated with retrospective binary treatment outcomes.

Models were trained using S1 1LTFs and three common classifiers: Fischer’s Linear
Discriminant (FLD), Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN).
To account for varying magnitudes within the features, z-score scaling was carried out
at the feature level. To split test and training data, a leave-one-out approach was used,
whereby iteratively, each sample was left out, and models were trained, validated, and
subsequently tested on the held-out sample. After the test sample was left out, but before
training, the synthetic minority oversampling method (SMOTE) was utilized to account
for the imbalance of data (23 CR/40 PR) [34]. During each iteration, a 5-fold split was
used on the remaining data to train and validate the models. To avoid overfitting and
increase model robustness, a sequential forward selection (SFS) method in a wrapper
framework was used to reduce dimensionality and identify valuable S1 features based on
an increasing balanced accuracy metric. Throughout all of the leave-one-out iterations, the
most frequently selected combinations of single-feature and multi-feature models were
identified and tested on the left-out samples for models with 1–10 features.

The attention mechanism is one of the most influential developments within deep
learning for text- and image-based studies. This mechanism is based on amplifying impor-
tant areas in image or word inputs to receive more attention from the learning networks to
enhance the performance [35]. Inspired by attention mechanism, we proposed deep texture
analysis based on the extraction of important features within the image. To draw parallels,
in this technique, radiomics features are extracted from images coded by important selected
radiomics features from previous layers. Whereas in the attention mechanism, the scaled
dot-product is used to obtain the importance of each token, here, the output of the classifiers
determines the important features.

After identifying the most valuable 1LTFs from the S1 feature set, texture features
were calculated once again, this time, however, using a sliding window technique (window
size of 3 × 3 pixels) for sub-ROI windows rather than for the entire LN ROI. For each of
the three classifiers, S1 feature maps were made for the models that resulted in the best-
balanced accuracy test score among the 10 models. If multiple models demonstrated the
same highest balanced accuracy, preference was given to the model using fewer features.

Next, using Pyradiomics, 2nd-layer texture features (2LTFs) were “mined” from the S1
feature maps (rather than the MRI scans directly). Previously identified top-k 1LTFs from
each classifier’s top model were concatenated with newly determined 2LTFs to create new
feature sets, S2,FLD, S2,SVM, and S2,kNN, respectively. Subsequently, identical model building
and testing procedures were repeated to evaluate the influence of implementing deeper-
layer features on predictive models. In addition to 2LTFs, the iterative DTA methodology
was repeated with the aforementioned steps to evaluate the inclusion of 3rd-layer texture
features (3LTFs) as well.

To evaluate whether the inclusion of deeper-layer features was worthwhile for model
building (independently of model complexity with regards to the number of features),
average performances of models trained using the S1 dataset were compared to the average
performance of models trained using S2 and S3 datasets, using a one-tailed t-test with
the significance level (α) set at p = 0.05, assessing the null hypothesis that there was no
difference in average performance metrics.
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3. Results
3.1. Patient Characterstics

A total of 63 patients were involved in this study. The median age of patients at the
time of diagnosis was 61 years (range, 36–80), and 94% were male. Primary tumors were
located in the oropharynx (68%, n = 43), larynx (6%, n = 4), hypopharynx (5%, n = 3), and
nasopharynx (8%, n = 5). A total of 13% (n = 8) of tumors were of unknown or unspecified
primary locations. A total of 94% of tumors (n = 59) were squamous cell carcinomas. A
total of 86% received platinum-based concurrent chemotherapy (n = 54). Tumor staging,
p16 status, and alcohol and tobacco consumption habits were summarized in Table 1.
Supplementary Table S1 includes anonymized medical and treatment characteristics for
individual patients. A total of 23 patients achieved CR and 40 PR at 3 months after
radiotherapy. Figure 2 provides representative MRI scans and index LN ROIs before and
after treatment for a CR and PR patient.

Table 1. Summary of demographic and clinical characteristics analyzed in patients in study cohort.

Demographics and Clinical Characteristics n (%)

Age (years)

Median (range) 61 (36–80)
Mean 60.7 ± 9.8

Sex

Male 59 (94)
Female 4 (6)

Primary Tumor Type

Squamous cell carcinoma 59 (94)
Other 4 (6)

Primary Tumor location

Nasopharynx 5 (8)
Oropharynx 43 (68)

Hypopharynx 3 (5)
Larynx 4 (6)

Unspecified 8 (13)

HPV/p16 Status

p16+ 35 (55)
p16− 1 (1.5)

p16+ and p63+ 1 (1.5)
HPV+ 1 (1.5)

Epstein–Barr virus 2 (3)
Unknown/not tested 23 (36)

Tumor (T) and Node (N) Staging

T1 4 (6)
T2 22 (35)
T3 5 (8)
T4 13 (21)

Unspecified 19 (30)
N1 8 (13)
N2 23 (44)
N3 4 (6)

Unspecified 23 (37)

Chemotherapy Regimen

Cisplatin 43 (68)
Carboplatin 6 (10)

No chemotherapy 9 (14)
Combination Cis/Carboplatin 5 (8)
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Table 1. Cont.

Demographics and Clinical Characteristics n (%)

Smoking Habits

Smoker 36 (57)
Non-smoker 21 (33)
Unspecified 6 (10)

Drinking Habits

Occasional drinker 23 (36)
Heavy drinker 17 (27)
Non-drinker 13 (21)
Unspecified 10 (16)

Post-Treatment Assessment

Complete responder (CR) 23 (36.5)
Partial responder (PR) 40 (63.5)
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3.2. Models Trained with S1 Feature Set

Seventy 1LTFs were determined from LN segmentations from axial slices of MRI scans
to create the S1 feature set used to train models. As presented in Table 2, FLD, k-NN, and
SVM classifier predictive models demonstrated a capability to differentiate between CR-
and PR-labeled patients, with varying effectiveness. For each classifier, the best-performing
model (highest balanced accuracy with the lowest number of features) was identified and
is highlighted in Table 2.

Table 2. Results from SVM, k-NN, and FLD classifier models trained using S1 feature set selecting for
1–10 features. For each classifier, the highest balanced accuracy is bolded, and highlighted in gray
are the corresponding metrics for said models. For each classifier, features from the top balanced
accuracy model were used to create texture feature maps for DTA.

No. of
Features Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) Balanced

Accuracy (%) AUC (%)

SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD
1 80 75 82.5 56.5 65.2 65.2 71.4 71.4 76.2 76.2 78.9 80.5 68.3 70.1 73.9 72.1 68.2 79.5
2 85 75 82.5 60.9 69.6 65.2 76.2 73 76.2 79.1 81.1 80.5 72.9 72.3 73.9 77.9 70.7 77.3
3 85 72.5 80 60.9 69.6 69.6 76.2 71.4 76.2 79.1 80.6 82.1 72.9 71 74.8 78.7 71.9 78.4
4 85 75 80 69.6 69.6 69.6 79.4 73 76.2 82.9 81.1 82.1 77.3 72.3 74.8 80.1 75.3 77.7
5 82.5 75 80 65.2 69.6 65.2 76.2 73 74.6 80.5 81.1 80 73.9 72.3 72.6 79.9 70.9 78.4
6 77.5 75 82.5 73.9 69.6 69.6 76.2 73 77.8 83.8 81.1 82.5 75.7 72.3 76 78.6 70.3 77.7
7 72.5 75 82.5 73.9 65.2 69.6 73 71.4 77.8 82.9 78.9 82.5 73.2 70.1 76 79.1 71.4 79.5
8 70 80 80 78.3 69.6 65.2 73 76.2 74.6 84.8 82.1 80 74.1 74.8 72.6 77.5 72.5 79.3
9 70 80 77.5 82.6 73.9 65.2 74.6 77.8 73 87.5 84.2 79.5 76.3 77 71.4 77.3 72 79
10 90 80 82.5 56.5 69.6 69.6 77.8 76.2 77.8 78.3 82.1 82.5 73.3 74.8 76 78.5 72.5 79.3

The best performance among the ten SVM classifier models was with the four-feature
multivariable model, with a sensitivity (%Sn) of 85%, specificity (%Sp) of 70%, accuracy
(%Acc) of 79%, precision (%Pre) of 83%, balanced accuracy (%BA) of 77%, and an area
under (%AUC) the receiver operator characteristic (ROC) curve of 80%. Of the four selected
features, three were GLCM features, including “Difference Entropy”, “Joint Entropy”, and
“Joint Energy”, and one was a GLRLM feature, “Short Run Emphasis”. Feature maps were
made for the aforementioned four features, using the sliding window technique, from
which 2LTFs were determined in preparation of the S2,SVM feature set.

The best performance among the ten k-NN (k = 5) classifier models was seen with the
nine-feature multivariable model, with %Sn = 80%, %Sp = 74%, %Acc = 78%, %Pre = 84%,
%BA = 77%, and %AUC = 72%. The nine selected features were three GLCM features,
i.e., “Maximum Probability”, “IDM”, and “Joint Energy”; two GLRLM features, i.e.,
“Run Percentage” and “Low Gray Level Run Emphasis”; three GLSZM features, i.e.,
“Small Area Emphasis”, “Small Area Low Gray Level Emphasis”, and “Size Zone Non-
Uniformity Normalized”; and one GLDM feature, i.e., “Low Gray Level Emphasis”.
Feature maps were made for the aforementioned nine features, using the sliding window
technique, from which 2LTFs were determined in preparation for the S2,KNN feature set.

The best performance among the ten FLD classifier models was seen with the six-
feature multivariable model, with %Sn = 83%, %Sp = 70%, %Acc = 78%, %Pre = 83%,
%BA = 76%, and %AUC = 78%. The six selected features were three GLCM features,
i.e., “Difference Average”, “MCC”, and “Inverse Variance”; two GLDM features, i.e.,
“Small Dependence Low Gray Level Emphasis” and “Large Dependence Low Gray Level
Emphasis”; and one GLRLM feature, i.e., “Run Variance”. Feature maps were made for the
aforementioned six features, using the sliding window technique, from which 2LTFs were
determined in preparation for the S2,FLD feature set.
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3.3. Models Trained with S2 Feature Sets

Feature maps were made from the selected features from each classifiers’ best-performing
model. From each of the newly created feature maps, once again, 70 radiomics features
were determined to create second-layer texture features (2LTFs). S2 feature set preparation
included retaining top-k selected 1LTFs from the first iteration of model building and
concatenating with newly mined 2LTFs. The S2,SVM feature set was comprised of 284 total
features ((4 × 1LTFs) + (70 2LTFs × 4 sets of 1LTF maps)). The S2,KNN feature set was
comprised of 639 total features ((9 × 1LTFs) + (70 2LTFs × 9 sets of 1LTF maps)). The
S2,FLD feature set was comprised of 426 total features ((6 × 1LTFs) + (70 2LTFs × 6 sets of
1LTF maps)).

After S2 feature set preparation was completed, predictive models were trained,
validated, and tested again, with model building parameters unchanged. Ten models were
built for each classifier with 1–10 features, and the results are presented in Table 3. The best
performances were seen with the nine-, four-, and six-feature multivariable models for the
SVM, k-NN, and FLD classifiers, respectively.

Table 3. Results from SVM, k-NN, and FLD classifier models trained using S2,SVM, S2,kNN, S2,FLD

feature sets and selecting for 1–10 features. For each classifier, the highest balanced accuracy is bolded,
and highlighted in gray are the corresponding metrics for said models. 2LTFs selected for in each
classifiers’ top model were used to create texture feature maps for DTA.

No. of
Features Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) Balanced

Accuracy (%) AUC (%)

SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD
1 80 87.5 72.5 65.2 60.9 78.3 74.6 77.8 74.6 80 79.5 85.3 72.6 74.2 75.4 72 65 75.3
2 80 85 72.5 65.2 69.6 73.9 74.6 79.4 73 80 82.9 82.9 72.6 77.3 73.2 74.3 78.6 76.2
3 82.5 82.5 67.5 60.9 56.5 87 74.6 73 74.6 78.6 76.7 90 71.7 69.5 77.2 74.9 69.4 80.8
4 85 90 70 65.2 69.6 87 77.8 82.5 76.2 81 83.7 90.3 75.1 79.8 78.5 78.5 75.5 81.2
5 80 90 70 65.2 69.6 87 74.6 82.5 76.2 80 83.7 90.3 72.6 79.8 78.5 79.1 75.5 82.4
6 80 87.5 72.5 69.6 69.6 87 76.2 81 77.8 82.1 83.3 90.6 74.8 78.5 79.7 77.6 74.1 82.4
7 80 75 72.5 69.6 60.9 87 76.2 69.8 77.8 82.1 76.9 90.6 74.8 67.9 79.7 79.9 67.7 82.9
8 82.5 72.5 72.5 69.6 52.2 87 77.8 65.1 77.8 82.5 72.5 90.6 76 62.3 79.7 79.2 59.7 82.9
9 85 70 70 69.6 52.2 87 79.4 63.5 76.2 82.9 71.8 90.3 77.3 61.1 78.5 80 57.7 82.1
10 82.5 87.5 72.5 69.6 65.2 87 77.8 79.4 77.8 82.5 81.4 90.6 76 76.4 79.7 80.2 75.9 84

The best performance among the ten SVM classifier models trained with the S2,SVM
feature set was seen with the nine-feature multivariable model, with %Sn = 85%, %Sp = 70%,
%Acc = 79%, %Pre = 83%, %BA = 77%, and %AUC = 80%. Of the nine selected features,
four were the originally selected 1LTFs, and five were newly introduced 2LTFs. Of the
selected five 2LTFs, three were determined from the GLCM “Joint Energy” feature map.
Those features were GLCM “Sum Entropy” and “Joint energy”, as well as GLSZM “Gray
Level Non-Uniformity Normalized”. Of the remaining two 2LTFs, one was GLCM “Joint
Energy” determined from the GLCM “Difference Entropy” feature map, and the other
was GLRLM “Long Run Emphasis” determined from the GLRLM “Short Run Emphasis”
feature map.

The best performance among the ten k-NN classifier models trained with the S2,kNN
feature set was seen with the four-feature multivariable model, with %Sn = 90%, %Sp = 70%,
%Acc = 83%, %Pre = 84%, %BA = 80%, and %AUC = 76%. Of the four selected features, two
were the originally selected 1LTFs, and two were newly introduced 2LTFs. The selected
1LTFs were GLCM “IDM” and “Maximum Probability”, and the two 2LTFs were GLCM
“Maximum Probability” determined from the GLRLM “Run Percentage” feature map and
GLSZM “Size Zone Non-Uniformity Normalized” determined from the GLSZM “Small
Area Low Gray Level Emphasis” feature map.

The best performance among the ten FLD classifier models trained with the S2,FLD
feature set was seen with the six-feature multivariable model, with %Sn = 73%, %Sp = 87%,
%Acc = 78%, %Pre = 91%, %BA = 80%, and %AUC = 82%. All six of the selected features
were newly introduced 2LTFs. These features were GLCM “MCC” and GLRLM “Run
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Entropy” determined from the GLCM “MCC” feature map, GLCM “IDN” and GLSZM
“Zone Entropy” from the GLCM “Inverse Variance” feature map, and GLCM “Joint Entropy”
from both the GLRLM “Run Variance” feature map and the GLDM “Small Dependence
Low Gray Level Emphasis” feature map, respectively.

3.4. Models Trained with S3 Feature-Sets

Selected features for each classifiers’ top-performing model were retained for S3
feature sets. Using Pyradiomics, feature maps were made from the selected 2LTFs and
their associated 1LTF map. Figure 3 shows an example of a CR and PR patient with their
associated MRI, LN ROI, an example of an 1LTF map, and an 2LTF map. From each
of the newly created 2LTF maps associated with the three classifiers’ best-performing
model, seventy third-layer texture features (3LTFs) were determined and concatenated
to the previously retained first-layer and or second-layer features selected for by models
trained with S2 feature-sets. The S3,SVM feature set was comprised of 359 total features
((4 × 1LTFs) + (5 × 2LTFs) + (70 3LTFs × 5 sets of 2LTF maps)). The S2,KNN feature set was
comprised of 144 total features ((2 × 1LTFs) + (2 × 2LTFs) + (70 3LTFs × 2 sets of 2LTF
maps)). S3,FLD consisted of 426 total features ((6 × 2LTFs) + (70 3LTFs × 6 sets of 2LTFs)).

After S3 feature set preparation was completed, predictive models were trained,
validated, and tested again, with all model-building parameters unchanged. For each
classifier, ten models were built with 1–10 features, and the results can be seen in Table 4.
The best performances were seen with the six-, nine-, and four-feature multivariable models
for the SVM, k-NN, and FLD classifiers, respectively.

Table 4. Results from SVM, k-NN, and FLD classifier models trained using S3,SVM, S3,kNN, S3,FLD

feature sets and selecting for 1–10 features. For each classifier, the highest balanced accuracy is bolded,
and highlighted in gray are the corresponding metrics for said models.

No. of
Features Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) Balanced

Accuracy (%) AUC (%)

SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD SVM KNN FLD
1 80 85 77.5 69.6 60.9 73.9 76.2 76.2 76.2 82.1 79.1 83.8 74.8 72.9 75.7 73.3 64.7 76.2
2 80 87.5 72.5 65.2 69.6 78.3 74.6 81 74.6 80 83.3 85.3 72.6 78.5 75.4 74.7 79 79.8
3 82.5 90 75 65.2 69.6 82.6 76.2 82.5 77.8 80.5 83.7 88.2 73.9 79.8 78.8 74.8 75.3 79
4 82.5 87.5 75 65.2 69.6 87 76.2 81 79.4 80.5 83.3 90.9 73.9 78.5 81 74.9 74.4 80.7
5 77.5 90 75 65.2 69.6 87 73 82.5 79.4 79.5 83.7 90.9 71.4 79.8 81 73.6 73.8 81.4
6 85 90 75 69.6 73.9 87 79.4 84.1 79.4 82.9 85.7 90.9 77.3 82 81 77.2 74.3 80.4
7 82.5 90 72.5 69.6 69.6 87 77.8 82.5 77.8 82.5 83.7 90.6 76 79.8 79.7 78.5 76.4 81.1
8 85 90 72.5 69.6 73.9 87 79.4 84.1 77.8 82.9 85.7 90.6 77.3 82 79.7 79.2 74.7 79.3
9 77.5 92.5 72.5 69.6 73.9 87 74.6 85.7 77.8 81.6 86 90.6 73.5 83.2 79.7 79.6 74.9 80.7
10 85 90 72.5 69.6 69.6 82.6 79.4 82.5 76.2 82.9 83.7 87.9 77.3 79.8 77.6 79.8 74.7 79.6

The best performance among the ten SVM classifier models trained with the S3,SVM
feature set was seen with the six-feature multivariable model, with %Sn = 85%, %Sp = 70%,
%Acc = 79%, %Pre = 83%, %BA = 77%, and %AUC = 77%. All six of the selected features
were first- and second-layer texture features. None of the 350 available 3LTFs were selected,
and the top performance of the S3,SVM feature set-trained SVM classifier model matched
but did not exceed the performance of the best SVM model trained with the S2,SVM feature
set. The selected features were two 1LTFs (GLCM “Joint Energy” and “Joint Entropy”)
and four 2LTFs (GLCM “Joint Energy” and “Sum Entropy” from the GLCM “Joint Energy”
feature map, GLCM “Joint Energy” from the GLCM “Difference Entropy” feature map, and
GLRLM “Long Run Emphasis” from the GLRLM “Short Run Emphasis” feature map).
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Figure 3. Axial MRI and associated LN ROI, 1LTF map, and 2LTF map for one PR and one CR patient
showing the potential importance of spatial distribution of features as a source of phenotypic signaling.

The best performance among the ten k-NN classifier models trained with the S3,kNN
feature set was seen with the nine-feature multivariable model, with %Sn = 93%, %Sp = 74%,
%Acc = 86%, %Pre = 86%, %BA = 83%, and %AUC = 75%. This was also the best-performing
model in the study. Of the nine selected features, two were 1LTFs, two were 2LTFS, and
the remaining five were 3LTFS. The two 1LTFs were GLCM “Maximum Probability” and
“IDM”. The two 2LTFs were GLCM “Maximum Probability” from the GLRLM “Run
Percentage” feature map and GLSZM “Size Zone Non-Uniformity Normalized” from the
GLSZM “Small Area Low Gray Level Emphasis” 1LTF map. Of the five 3LTFs, four were
determined from the GLRLM “Run Percentage” GLCM “Maximum Probability” 2LTF
map, and those were GLCM “Joint Energy”, “Inverse Variance”, IDMN”, and “IDN”. The
final selected 3LTF was GLRLM “Low Gray Level Run Emphasis” determined from the
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GLSZM “Small Area Low Gray Level Emphasis” and GLSZM “Size Zone Non-Uniformity
Normalized” 2LTF maps.

The best performance among the ten FLD classifier models trained with the S3,FLD
feature set was seen with the four-feature multivariable model, with %Sn = 75%, %Sp = 87%,
%Acc = 79%, %Pre = 91%, %BA = 81%, and %AUC = 81%. Of the four selected features,
two were 2LTFs, and two were 3LTFs. The two 2LTFs were GLCM “MCC” from the GLCM
“MCC” 1LTF map and GLDM “Small Dependence Low Gray Level Emphasis” from the
GLCM “Joint Entropy” 1LTF map. The two 3LTFs were GLCM “MCC” from the GLCM
“MCC” GLRLM “Run Entropy” 2LTF map and GLCM “Difference Average” from the
GLRLM “Run Variance” GLCM “Joint Entropy” 2LTF map.

3.5. Evaluating Deeper-Layer Features

Next, an assessment was conducted to determine whether incorporating and pro-
cessing deeper-layer texture features was beneficial. For the ten models created at each
layer, the average performance of models trained using Sn feature sets was compared
to Sn + 1 and Sn + 2 (when possible) using a one-tailed t-test with the significance level
(α) set at p = 0.05, assessing the null hypothesis that there was no difference in average
performance metrics. Tables 5–7 summarize the findings for the inclusion of deeper-layer
texture features for the SVM, k-NN, and FLD classifiers, respectively.

Table 5. Average of 10 SVM classifier models trained using S1, S2,SVM, and S3,SVM feature sets as well
as associated p-values from one-tailed t-test to evaluate enhancement.

Average
Performance (%) S1 S2,SVM p Value S2,SVM S3,SVM p Value S1 S3,SVM p Value

Sensitivity 79.8 ± 6.7 81.8 ± 1.9 0.208 81.8 ± 1.9 81.8 ± 2.8 0.5 79.8 ± 6.7 81.8 ± 2.8 0.205
Specificity 67.8 ± 2.6 67.0 ± 2.9 0.367 67.0 ± 2.9 67.8 ± 2.2 0.083 67.8 ± 2.6 67.8 ± 2.2 0.5
Accuracy 75.4 ± 2.3 76.3 ± 1.7 0.148 76.3 ± 1.7 76.7 ± 2.2 0.339 75.4 ± 2.3 76.7 ± 2.2 0.134
Precision 81.5 ± 3.3 81.2 ± 1.4 0.349 81.2 ± 1.4 81.5 ± 1.2 0.141 81.5 ± 3.3 81.5 ± 1.2 0.486

Balanced accuracy 73.8 ± 2.3 74.4 ± 1.8 0.207 74.4 ± 1.8 74.8 ± 2.0 0.253 73.8 ± 2.3 74.8 ± 2.0 0.178
AUC 78 ± 2.2 77.6 ± 2.7 0.294 77.6 ± 2.7 76.5 ± 2.4 0.071 78 ± 2.2 76.5 ± 2.4 0.090

Table 6. Average of 10 k-NN classifier models trained using S1, S2,KNN, and S3,KNN feature sets and
associated p-values from one-tailed t-test to evaluate enhancement. Bolded are p-values for metrics
that demonstrated statistically significant enhancement with inclusion of features from deeper layers.

Average
Performance (%) S1 S2,KNN p Value S2, KNN S3,KNN p Value S1 S3,KNN p Value

Sensitivity 76.3 ± 2.6 82.8 ± 7.1 0.025 82.8 ± 7.1 89.3 ± 1.9 0.022 76.3 ± 2.6 89.3 ± 1.9 <0.001
Specificity 69.1 ± 2.3 62.6 ± 6.8 0.014 62.6 ± 6.8 70.0 ± 3.6 0.012 69.1 ± 2.34 70.0 ± 3.6 0.171
Accuracy 73.7 ± 2.2 75.4 ± 6.7 0.264 75.4 ± 6.7 82.2 ± 2.4 0.016 73.7 ± 2.2 82.2 ± 2.4 <0.05
Precision 81.1 ± 1.5 79.3 ± 4.3 0.149 79.3 ± 4.3 83.8 ± 1.9 0.014 81.1 ± 1.5 83.8 ± 1.9 <0.05

Balanced accuracy 72.7 ± 2.1 72.7 ± 6.7 0.498 72.7 ± 6.7 79.6 ± 2.7 0.015 72.7 ± 2.1 79.6 ± 2.7 <0.001
AUC 71.6 ± 1.7 69.9 ± 6.9 0.245 69.9 ± 6.9 74.2 ± 3.5 0.043 71.6 ± 1.7 74.2 ± 3.5 0.013

Table 7. Average of 10 FLD classifier models trained using S1, S2,FLD, and S3,FLD feature sets and
associated results for one-tailed t-test p-value. Bolded are p-values for metrics that demonstrated
statistically significant enhancement with inclusion of features from deeper layers.

Average
Performance (%) S1 S2,FLD p Value S2, FLD S3,FLD p Value S1 S3,FLD p Value

Sensitivity 81.0 ± 1.7 71.3 ± 1.7 <0.05 71.3 ± 1.7 74.0 ± 1.7 <0.01 81.0 ± 1.7 74.0 ± 1.7 <0.05
Specificity 67.4 ± 2.2 84.8 ± 4.5 <0.01 84.8 ± 4.5 83.9 ± 4.4 0.171 67.4 ± 2.2 83.9 ± 4.4 <0.05
Accuracy 76.0 ± 1.5 76.2 ± 1.6 0.405 76.2 ± 1.6 77.6 ± 1.5 <0.01 76.0 ± 1.5 77.6 ± 1.5 <0.05
Precision 81.2 ± 1.2 89.2 ± 2.6 <0.05 89.2 ± 2.6 89 ± 2.5 0.351 81.2 ± 1.2 89.0 ± 2.5 <0.05

Balanced accuracy 74.2 ± 1.6 78.0 ± 2.0 <0.05 78.0 ± 2.0 79.0 ± 2.0 <0.05 74.2 ± 1.6 79.0 ± 2.0 <0.05
AUC 78.6 ± 0.8 81.0 ± 2.8 0.012 81 ± 2.8 79.8 ± 1.4 0.061 78.6 ± 0.8 79.8 ± 1.4 <0.05
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The one-tailed t-test to evaluate meaningful improvement suggests that the inclusion
of deeper-layer texture features and the DTA method did not statistically improve or
degrade the performances of the SVM models. Figure 4 is a visual representation of the
results from Table 5.

As seen in Table 6, comparing the k-NN classifier models trained using the S1 and
S2,KNN feature sets showed that average sensitivity increased significantly (p = 0.025) from
%Sn = 76% to 83%, whereas average specificity decreased significantly (p = 0.014) from
%Sp = 69% to 63%. Accuracy, precision, balanced accuracy, and AUC did not change
significantly. After the next iteration of DTA, comparing the average performance of the
k-NN classifier models trained using the S2,KNN and S3,KNN feature sets, every metric
demonstrated a statistically significant improvement. Average sensitivity increased from
%Sn = 83% to 89%, average specificity from %Sp = 63% to 70%, average accuracy from
%Acc = 75% to 82%, average precision from %Pre = 79% to 84%, average balanced
accuracy from %BA = 73% to 80%, and average AUC from %AUC = 70% to 74%.
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Figure 4. Average performance metrics to predict treatment outcomes with SVM classifier models
trained using S1, S2,SVM, and S3,SVM feature sets.

Figure 5 visually presents the results from Table 6. Comparing the performances of
the k-NN classifier models trained using S1 to models trained using S3,KNN shows that
with the exception of average specificity, all other metrics improved significantly with
the inclusion of 2LTFs and 3LTFs. Average sensitivity increased from %Sn = 76% to
89%, average accuracy from %Acc = 74% to 82%, average precision from %Pre = 81% to
e = 84%, average balanced accuracy from %BA = 73% to 80%, and average AUC from
%AUC = 72% to 74%.

Finally, the results for the FLD classifier models trained using the S1 and S2,FLD
feature sets are shown in Table 7, where it can be seen that average sensitivity decreased
significantly from %Sn = 81% to 71%, whereas average specificity, average precision,
average balanced accuracy, and average AUC increased significantly from %Sp = 67% to
85%, %Pre = 81% to 89%, %BA = 74% to 78%, and %AUC = 79% to 81%, respectively.

Evaluating the DTA methodology one layer deeper and comparing the average per-
formance of FLD classifier models trained using the S2,FLD feature set to models trained
using the S3,FLD feature set, the one-tailed t-test revealed that average sensitivity, average
accuracy, and average balanced accuracy improved significantly, from %Sn = 71% to
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%Sn = 74%, %Acc = 76% to %Acc = 78%, and %BA = 78% to %BA = 79%, respectively.
Specificity, precision, and AUC did not change significantly. Figure 6 visually presents the
results of Table 7. Comparing average FLD classifier models trained with two iterations
of DTA (S3,FLD) to average models trained with the original radiomics features (S1) results
in significant enhancement of the average specificity, average accuracy, average precision,
and average, while showing a significant decrease in sensitivity.
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4. Discussion

With growing appreciation of and a shift toward personalized medicine, clinicians
and researchers have come to embrace the idea that a “one-size-fits-all” approach is of-
ten suboptimal, and that identifying clinically relevant biomarkers can lead to valuable
breakthroughs, on both population levels and, by extension, on individual patients’ out-
comes. These biomarkers can include clinical biomarkers (such as HPV status), genomic
biomarkers, and/or imaging biomarkers, referred to as radiomics features [36]. Though RT
and systemic therapy (such as chemotherapy) are two of the most prominent and widely
implemented approaches for treating cancer, they also present the possibility for patients
to experience several undesirable side effects, such as cardio-cytotoxicity, nephrotoxicity,
myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and mucositis,
to name a few, and they may exaggerate the already challenging burden of cancer on
patients [37]. An in-depth review of the physiological mechanisms associated with negative
treatment side effects can be found in the work of Liu et al. [37]. Similarly, Rocha et al.
provided sub-site specific insights regarding treatment side effects of H&N cancers and
qualitative imaging features that may aid clinicians in identifying said symptoms from med-
ical images [38]. Although vast improvements with precision delivery and patient-specific
customization have markedly improved survival and recurrence rates, the unfortunate
reality of cancer treatment is that it does necessarily yield desired outcomes, as shown in
Figure 2. Accurate and reliable a priori insights about an individual’s response to upcom-
ing treatment could provide clinicians with a valuable tool in aiding with both treatment
planning and decision making. For example, if a patient is predicted to respond well to
treatment, they could be given reassurances in regards to the likelihood for success and
overcome potential hesitations or fears of ineffective treatment. Consequently, if a patient is
predicted to exhibit an insufficient response to treatment, physicians may adjust treatment
doses or fractionation, or perhaps advise against undergoing treatment and sparing the
patient the potential aforementioned undesirable side effects.

This study explored phenotypic insights from regional involved LNs of H&N cancer
patients (n = 63) by “mining” 2D radiomics features from axial slices of pre-treatment
T1-weighted post-contrast MRI scans of cancer patients (S1 feature set) and using ex post
binary treatment outcomes to train and test predictive models with three common ML
classifiers (SVM, k-NN, FLD). Crucially, the DTA methodology was explored to evaluate
whether the inclusion of deeper-layer features enhanced model performances, suggesting
that the proposed method may be a worthwhile consideration for future radiomics studies.

For each of the three classifiers, ten models were created using an SFS method for
1–10 features. Throughout the study, the best model was considered as the one with the
highest %BA and the lowest number of features. For the SVM, k-NN, and FLD classifier
models trained using the S1 feature set, the outstanding models were the four-, nine-,
and six-feature multivariable models, with %BA = 77%, 77%, and 76%, respectively.
Interestingly “Joint Energy”, a GLCM feature, was selected for both the SVM and k-NN
classifier models. “Joint Energy” is a measure of homogenous patterns, with a greater value
implying more instances of pixel intensity pairs in the image that neighbor each other at
high frequencies [33]. Taking into account the role of tumor heterogeneity with regards to
outcomes, it is interesting that in this study, the average GLCM “Joint Energy” value for the
CR and PR group was 3.3 × 10−4 and 1.6 × 10−4, respectively (arbitrary units), suggesting
that treatment was more effective for patients exhibiting more homogeneous patterns.

In recent years, with advancements in computing power and affordability, research-
ing ML modeling has increased in popularity. Coupled with improvements in imaging
techniques, this has resulted in growing interest for radiomics investigations aimed at
predicting a variety of biological endpoints. For example, Niu et al. found that by using
contrast-enhanced T1- and T2-weighted MRI images, preoperative prediction of cavernous
sinus invasion by pituitary adenomas was possible, with %AUC = 82.6% and 87.1% for
exclusively radiomics features and radiomics + clinical features, respectively [39]. Tang et al.
found it possible to predict recurrence within two years of locally advanced esophageal SCC
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with radiomics features with a sensitivity of %Sn = 87% with a sample size of n = 220 [40].
Yet another study reported promising results using H&N patients’ pre-operative CT ra-
diomics features to predict metastasis, with %Acc = 78% and %Acc = 74%, and extranodal
extension with %Acc = 80% and %Acc = 70%, for the model compared with experienced
radiologists, respectively [41]. Previously, ML models trained using radiomics features
mined from pre-treatment LN QUS parametric maps for the same patient cohort studied in
this investigation were found to predict binary treatment outcomes with %Sn = 81% and
%Sp = 76% using a seven-feature multivariable model trained using the SVM classifier [28].
Whereas CT and MRI radiomics studies mine features from the images directly, it is worth
bringing attention to the distinction that QUS radiomics studies utilize raw RF data rather
than processing of B-mode images and pixel intensities [42]. Using the sliding window
technique, RF data can be converted into a QUS spectrum from which various parameters
can be extracted [43]. In the QUS study, parametric maps were created for various quantita-
tive US spectral parameters, before radiomics features were determined for model building.
QUS spectral parameters have proven useful for characterizing cellular conditions such as
apoptosis [44,45]. Similarly, for the same patient cohort, radiomics features were mined
from treatment-planning CT LN segmentations and used to train ML classifiers to create
predictive models, resulting in %BA = 71% for a six-feature SVM classifier model trained
using only 1LTFs [29].

This study is unique in that the potential for MRI deeper-layer features was explored
in order to study the heterogeneity of features with a resolution of 0.5 mm. After building
the models trained using 1LTFs, the DTA method was initiated, and 1LTF maps were
made of the features selected for in each classifier’s best model. Subsequently, 2LTF
radiomics features were mined from the 1LTF maps. S2 feature sets were comprised of
newly determined 2LTFs concatenated with the retained 1LTFs selected for in the first
step. The best k-NN model trained using the S2,KNN feature set (four-feature multivariable
model) outperformed any of the models trained using the S1 feature set, with %BA = 80%.
Similarly, the best FLD model trained using the S2,FLD feature set (six-feature multivariable
model) outperformed any of the models trained using the S1 feature set, with %BA = 80%.
The best S2,SVM-trained SVM model matched but did not improve on the best-S1 trained
SVM model, with %BA = 77%.

Another iteration of the DTA method was carried out to mine 3LTFs, and again, the
best-performing k-NN and FLD models trained using the S3,KNN and S3,FLD feature sets
bested the top performances of models trained using the S2,KNN and S2,FLD feature sets,
with %BA = 83% and %BA = 81%, respectively. The nine-feature multivariable k-NN
model trained using the S3,KNN feature set was the best model in the study. The nine
selected features were a combination of two 1LTFs, two 2LTFS, and five 3LTFS.

Although the best performance of SVM models did not improve with the inclusion of
2LTFs and 3LTFs, it is worth emphasizing that it did not degrade either. This is theoretically
consistent, mainly because at each iteration of DTA, the best features from the previous
iteration are retained, while all other features are discarded. The principle of DTA works
such that after the introduction of deeper-layer features, two outcomes are that (i) the
models improve due to valuable information gain from new features, or (ii) the new
features are not providing additive benefit, at which point performance should match the
previous iteration due to retention of the previously selected features, as was the case in
this study.

Next, for each classifier, to inspect the effect of including deeper-layer features on
all the models, in each iteration, average performance metrics were evaluated for the
10 models created. As seen in Table 5, average SVM classifier models did not benefit from
the inclusion of 2LTFs or 3LTFs, as none of the average performance metrics changed in a
statistically significant manner (p > 0.05). However, once again, it is worth emphasizing
that average performances did not degrade in a statistically significant manner either, which
is to be expected due to retention of the best features from the previous iteration. On the
other hand, k-NN and FLD classifier models exhibited statistically significant improvement
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on several metrics, as shown in Tables 6 and 7 and visually represented in Figures 5 and 6.
As previously mentioned, the DTA feature enhancement methodology was evaluated for
this patient cohort with QUS [28] and CT [29] radiomics as well. In the QUS study, models
trained with the inclusion of 2LTFs improved the predictive capacity of the seven-feature
multivariable model up to %Sn = 85% and %Sp = 80%, a marked improvement from
the seven-feature multivariable model trained solely on 1LTFs, with %Sn = 81% and
%Sp = 76% [28]. Similarly, DTA methodology enhanced the performance of predictive
models trained using treatment-planning CT LN segmentations, with the best model
performance resulting from inclusion of 2LTFs and 3LTFs, with a seven-feature model SVM
classifier model demonstrating %Sn = 76% and %Sp = 64% [29]. It is worth mentioning
that in both of these studies, DTA methodology was carried out for the five-feature model
in each iteration, which was a decision made mainly to keep computation time reasonable
and not due to any loss function [28,29]. In this study, 1–10 feature multivariable models
were created for 1–10 features, and the model with the top BA was selected to proceed for
DTA. In the case of multiple models exhibiting the same top BA, the model with fewer
features was selected. To our knowledge, this is the first time that DTA methodology was
implemented on MRI images.

Computing radiomics features in 2D slices rather than 3D voxels and the use of a small
sample size are two factors that reduce the generalizability of the models. Another shortfall
involves one necessary step for mining radiomics features, which is an initial discretization
of image pixel intensities through binning, which was not optimized in this study and
is worth consideration [33]. Similarly, in this study, the window size for calculating the
feature maps was 3 × 3 pixels, which was the smallest window size possible, but future
studies could investigate optimizing window size as well [33]. Finally, a clinically feasible
model would likely maximize all available information and include clinical and genomics
features in addition to radiomics features. We acknowledge that HPV-related carcinomas
may have characteristic inhomogeneities as assessed by MRI, which are absent in non-
HPC cancers, and that in this work, the unknown HPV status may silently be reflected
in radiomic features. The hope is that radiomics features may capture and characterize
heterogeneous patterns from involved LNs that impact response to treatment, even absent
of knowledge about HPV status. In this study, clinical features were not consistently
available in institutional database patient notes and, as such, were not included.

5. Conclusions

A few key findings in this study include the following: (i) demonstration of the index
LNs of H&N cancer patients may exhibit a priori phenotypic MRI characteristics that can
be quantified with radiomics and provide insights regarding treatment efficacy; (ii) when
radiomics features were used to train machine learning classifiers, SVM, k-NN, and FLD
models performed with balanced accuracy of 77.3%, 77.0%, and 76%, respectively (see
Table 2); (iii) statistically significant improvement was demonstrated for average k-NN
and FLD models, with the best models showing 83% and 81% balanced accuracy (see
Table 4); (iv) even though average SVM classifier models did not improve significantly,
notably, average performance did not decrease either, which is consistent with expectations;
(v) it was found that predictive models trained with MRI radiomics demonstrated superior
performance to models trained with QUS and CT radiomics for the same cohort of patients
in previous works [28,29]. To our knowledge, this is the first time DTA was explored for
MRI radiomics, and results suggest that future radiomics investigations should consider
the proposed DTA method to enhance discriminating between populations of patients.
Accurate and robust predictive models can provide improved cancer care for patients and
provide clinicians with additional tools to guide decision making.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/radiation4020015/s1, Table S1: Anonymized clinical characteristics
of interest as reported in patient notes from institutional database.
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