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A priori prediction of breast 
cancer response to neoadjuvant 
chemotherapy using quantitative 
ultrasound, texture derivative 
and molecular subtype
Lakshmanan Sannachi 1,2, Laurentius O. Osapoetra 1,2, Daniel DiCenzo 1,2, 
Schontal Halstead 1,2,3,4, Frances Wright 3, Nicole Look‑Hong 3, Elzbieta Slodkowska 4, 
Sonal Gandhi 4, Belinda Curpen 5, Michael C. Kolios 6, Michael Oelze 7 & 
Gregory J. Czarnota 1,2,8,9*

The purpose of this study was to investigate the performances of the tumor response prediction 
prior to neoadjuvant chemotherapy based on quantitative ultrasound, tumour core-margin, texture 
derivative analyses, and molecular parameters in a large cohort of patients (n = 208) with locally 
advanced and earlier-stage breast cancer and combined them to best determine tumour responses 
with machine learning approach. Two multi-features response prediction algorithms using a k-nearest 
neighbour and support vector machine were developed with leave-one-out and hold-out cross-
validation methods to evaluate the performance of the response prediction models. In a leave-one-
out approach, the quantitative ultrasound-texture analysis based model attained good classification 
performance with 80% of accuracy and AUC of 0.83. Including molecular subtype in the model 
improved the performance to 83% of accuracy and 0.87 of AUC. Due to limited number of samples 
in the training process, a model developed with a hold-out approach exhibited a slightly higher bias 
error in classification performance. The most relevant features selected in predicting the response 
groups are core-to-margin, texture-derivative, and molecular subtype. These results imply that that 
baseline tumour-margin, texture derivative analysis methods combined with molecular subtype can 
potentially be used for the prediction of ultimate treatment response in patients prior to neoadjuvant 
chemotherapy.

Breast cancer remains a major public health problem for women1. Women, particularly those with locally-
advanced breast cancer (LABC), have poor long-term survival rates compared to early-stage breast cancer 
patients2. LABC occurs relatively infrequently, but it poses a significant clinical challenge. LABC generally refers 
to large breast tumours greater than 5 cm, including stage 3–4 disease, and in some cases, will involve the skin 
and chest wall. LABC may also involve axillary or peripheral lymph nodes. Treatment of LABC and earlier stage 
but high risk tumours often starts with neoadjuvant chemotherapy (NAC) followed by surgery and then radia-
tion therapy3,4. The advantage of neoadjuvant chemotherapy is that it can facilitate breast-conserving surgery in 
cases where there is a significant reduction in the tumour volume5. Along with early diagnosis, optimal therapy 
management is crucial to reducing mortality from breast cancer. Tumour response is a good prognostic factor 
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for long-term disease-free and overall survival6. However, not all patients respond to neoadjuvant chemotherapy 
equally. At present, breast cancer response to neoadjuvant chemotherapy is assessed from changes in tumour size 
and histological analysis of the post-operative specimen, which is typically occurs months after staring NAC.

Several studies have reported that patient who do not respond to initial chemotherapy may benefit from sal-
vage therapies, including additional systemic chemotherapy or preoperative radiation or surgery7–9. Therefore, 
finding tumour response biomarkers to NAC prior to treatment, which predict treatment outcomes, is important, 
as it could facilitate personalized treatment, resulting in improved tumour response to NAC and a better long-
term outcome. From a biological point of view, Ki-67, human epithelial growth factor receptor 2, and circulating 
tumour nucleosomes have been suggested to be predictive of the likelihood of breast tumour response to NAC 
prior to treatment10–12. A previous diffuse optical spectroscopic tomographic image analysis study reported that 
LABC pathologically complete response patients have significantly higher hemoglobin concentration levels than 
those with pathologically incomplete response. Recent studies involving CT and MRI images of LABC patients 
have demonstrated that texture analysis of these images could predict tumour response based on the hypothesize 
that the microstructure and metabolic characteristics of tumour might be linked to its aggressiveness and respon-
siveness to NAC13,14. Another imaging technique used in LABC tumour response monitoring and prediction is 
quantitative ultrasound (QUS)15–18. Unlike MRI and CT imaging, QUS backscatter-based biomarkers depend on 
intrinsic contrast alternations arising from changes in the microstructure and elastic properties of cancer cells 
when they respond to treatment, and hence the methods does not need contrast agents.

The QUS-detected responses in tumours to cancer treatment are related to biological changes in tumour 
microstructure and spatial inhomogeneity. Based on this hypothesis, QUS has been utilized in several pre-
clinical and clinical studies to detect tumour response to treatment early and during a course of treatment16,19,20. 
In those studies, QUS spectral parameters such as mid-band fit (MBF), spectral slope (SS) and 0-MHz intercept 
(SI) were investigated for evaluating patient responses to chemotherapy and showed a significant correlation 
with tumour response. These spectral parameters are related to scatterer properties such as scatterer size and 
scatterer acoustic concentration17. Additionally, these scatterer properties; average scatterer diameter (ASD) and 
average acoustic concentration (AAC) which are determined from the backscatter coefficient by fitting a spherical 
Gaussian model to the measured backscatter coefficient, have been used for treatment response monitoring in 
locally advanced breast tumours treated with chemotherapy16. In an another study, textural features determined 
from QUS parametric maps, such as contrast, correlation, energy and homogeneity, have been investigated in 
tumour response monitoring16,17,21,22. These texture parameters, which quantify the spatial relationship between 
neighboring acoustic property within tissue microstructures, have been demonstrated to be capable of charac-
terizing response heterogeneities23. Combining mean QUS values and texture features of the QUS parametric 
maps in response detection model development has demonstrated improvement in accuracies for monitoring 
tumour response.

In our previous study, tumour-margin analysis of QUS parametric images acquired from LABC patients 
was investigated for the prediction of tumour response to neoadjuvant chemotherapy before start of treatment, 
based on the hypothesis that the margin may account for the presence of microscopic infiltration from the pri-
mary tumour into the surrounding normal tissue24. The result demonstrated that, in addition to tumour core, 
QUS analysis of a 5-mm tumour surrounding region improved tumour response prediction performance. Most 
recently, texture-derivative parameters were derived from QUS parametric maps by constructing GLCM-based 
texture maps using a sliding window analysis18. That study reported further improvement in tumour response 
prediction before the start of treatment based on hypothesis that the second-order texture-derivatives param-
eters reflect intra-tumoural heterogeneity better than fundamental textural parameters, leading to improve the 
prediction of clinical outcomes.

Several investigators have explored the association between breast cancer molecular features and pathologi-
cal complete response after NAC. In an early-stage breast cancer study, researchers examined the relationship 
between molecular features and recurrence-free survival, revealing a robust correlation between them25. Simi-
larly, in a LABC study, investigators reported that HER2 + and triple negative breast cancer exhibit a higher rate 
of pathological complete response12,26. Other studies have highlighted significant differences in chemotherapy 
response rates and survival among breast cancer patients with various molecular subtypes, including HER2 + , 
triple negative, and ER and/or PR + with HER2- status27.

The current study builds from previous work18 by a significant expansion of the patient cohort involved. 
Additionally, the feature space is broadened by incorporating QUS, texture and texture-derivate features from 
the 5-mm tumour margin. In the present study, we examined 208 breast cancer patients including both locally 
advanced and earlier-stage cancer patients, who received NAC. Patients were categorized into two response 
groups based on modified response grading system described in our previous study16. The correlation of quan-
titative ultrasound, texture, texture derivative parameters estimated from primary tumour and 5-mm tumour 
margin ultrasound data with response was investigated. Core and margin analyses were combined with molecular 
subtype to enhance the prior treatment tumour response prediction model. To develop a highly accurate response 
prediction model, two standard classification algorithms in machine learning, nearest neighbors (KNN) and 
a support vector machines-radial basis function (SVM-RBF) were evaluated. We compared the performance 
of the diagnostic models developed based on margin analysis, texture derivatives, and molecular subtype, and 
their combination to understand the importance of these feature sets in tumour response. The obtained models 
were cross-validated using both leave-one-out (LOO) and hold-out cross-validation techniques to investigate 
the limitations of the dataset in developing tumour response prediction during the training process. Classifier 
performance was evaluated here using receiver operating characteristics (ROC) analysis to obtain metrics such us 
sensitivity, specificity, accuracy, area under the receiver operating characteristic curve (AUC), positive predictive 
value (PPV), and negative predictive value (NPV). This work demonstrates a method to predict tumour treatment 
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response before treatment initiation based on mean values of QUS parameters, texture, texture-derivatives, and 
tumour molecular subtype, potentially aiding clinicians in personalizing NAC for breast cancer.

Material and methods
Study protocol
In this study, 208 breast cancer patients including locally advanced and earlier-stage breast cancer were examined. 
This study adhered to the appropriate guidelines of the Sunnybrook Research Institute Research Ethics Board at 
Sunnybrook Health Sciences Centre (SHSC), Toronto, Canada. All experimental protocols were reviewed and 
approved by the Sunnybrook Research Institute Research Ethics Board at Sunnybrook Health Sciences Centre 
(SHSC), Toronto, Canada before commencing the study. All patients were enrolled with informed consent. As 
part of their standard care, all patients underwent a core needle biopsy before treatment to confirm a cancer 
diagnosis, histological subtype, and hormone receptor status, including estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor receptor 2 (HER2)) to determine tumour molecular subtype. 
Magnetic resonance images were obtained before treatment as part of clinical care to establish the initial tumour 
size. Ultrasonic data were acquired immediately before patients started chemotherapy. Following mastectomy, the 
patients’ mastectomy specimens were prepared on a 5˝ × 7˝ whole-mount pathology slide and digitized using a 
confocal scanner (TISSUEscope™, Huron Technologies, Waterloo, ON). A board-certified pathologist examined 
the specimens and recorded the results in the patient’s medical chart.

Patients were classified into two groups including responder (R) and non-responder (NR) using a modified 
response grading system based on the clinical/pathological tumour response determined at the end of their 
treatment16. The response category included the disappearance of all target lesions, and any pathological lymph 
nodes must have reduction in short axis to < 10 mm or at least 30% decrease in diameter of target lesions or cel-
lularity < 5% in the tumour bed (invasive disease) irrespective of size. This category incorporates both complete 
responders and partial responders. The non-response category included decrease in tumour size less than 30%, 
accompanied by no significant changes in tumour cellularity. This category incorporated stable disease and 
progressive disease.

Ultrasound data acquisition
All ultrasonic breast imaging and RF data acquisition were performed with a Sonix RP clinical research system 
(Analogic Medical Corp., Vancouver, Canada). A linear array transducer. L14-5/60 (Analogic Medical Corp., 
Vancouver, Canada), operating at a central frequency of 6.5 MHz was used, with a bandwidth range of 3–8 MHz 
and sampling at 40 MHz. The sector size for each image frame was 6 cm (lateral distance) and 4–6 cm (axial 
depth), storing 512 RF lines across the lateral distance. Four to seven image planes were acquired at 1 cm intervals 
across the involved breast, with the transducer focus set at the midline of the tumour. Although the majority of 
tumours were readily visible with ultrasound, tumour location was cross-verified using the patient’s dynamic 
contrast-enhanced MR images. The regions of interest of tumour were selected manually by a radiologist for all 
tumour RF-data frames. For tumour-margin analysis, in addition to tumour core, a 5-mm distance surrounding 
area was selected. The quantitative spectral, texture and texture-derivate analyses were performed on selected 
ROIs covering the tumour core and 5-mm margin.

Ultrasound data analysis
The quantitative ultrasound parameters, including MBF (mid-band fit), SS (spectral slope), SI (spectral intercept), 
ACE (attenuation co-efficient estimate), ASD (acoustic scatterer diameter) and AAC (average acoustic-scatterer 
concentration) were determined from ROI-selected tumour core and 5-mm margin areas using quantitative 
ultrasound methods16. In this technique, each ROI was divided into window blocks of size 10 times the ultra-
sound wavelength with 94% overlap in both the axial and lateral directions to construct QUS parametric images. 
Tumour attenuation was determined using a spectral difference method28. The reference phantom method was 
used to remove any ultrasound system dependencies in quantitative parameters estimation. The attenuation 
coefficient and speed of sound of the reference phantom were 0.786 dB/MHz/cm and 1540 m/s, respectively. 
MBF, SS and SI were calculated using linear regression analysis of the normalized backscatter power spectrum 
over the − 6 dB bandwidth of the transducer29. The ASD and AAC parameters were derived from the backscat-
ter coefficient by comparing measured data with a theoretically derived backscatter coefficient using a spherical 
Gaussian scatterer model (SGM)30. Finally, color-coded parametric maps for each estimated quantitative ultra-
sound parameter were constructed by generating a spatial map of the parameter values computed over all window 
blocks. The mean values of quantitative ultrasound parameters were determined by averaging QUS parametric 
map values. From the tumour core and 5-mm margin regions in QUS parametric images, two core-to-margin 
related parameters were calculated including core-to-margin ratio (CMR) and core-to-margin contrast ratio 
(CMCR)24. CMR compares the level of desired signal to the background noise, and CMCR is like CMR but also 
considers bias in an image.

Texture analysis
A statistical texture analysis technique was applied on QUS parametric images based on the concept of a grey-
level co-occurrence matrix (GLCM). The GLCM represents the statistical angular relationship between neigh-
bouring pixels, as well as the distance between them23. Four texture features, including contrast (CON), cor-
relation (COR), homogeneity (HOM), and energy (ENE), were determined based on the statistical information 
provided by GLCM analysis. QUS parametric maps of the MBF, SS, SI, ASD and AAC from core and margin 
regions underwent a GLCM-based texture analysis process to extract these four texture features. In texture 
analysis, the contrast feature represents location-dependent gray level variations in an image. The energy features 
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measures textural uniformity while the homogeneity measures the incidence of pixels pairs of different intensities. 
As the frequency of pixel pairs with close intensities increases, homogeneity increases. The correlation feature 
measures the linear dependency among neighbouring pixels. In this study, a total of 40 textural features (four 
features for each of the five QUS parametric maps) were computed.

Texture-derivative analysis was subsequently applied to the QUS parametric images. In contrast to the pre-
vious texture analysis approach that produces averaged texture measures, texture-derivate analysis works by 
creating intermediary texture-encoded maps using a sliding window analysis with a 15-pixel by 15-pixel window. 
Each pixel in these maps represents a quantification of local textures across the window18. A second-pass GLCM 
based texture analysis was subsequently performed on these maps, resulting in texture-derivate features. In the 
end, a total of 201 features, including mean QUS, core-to-margin, texture, and texture-derivative features were 
extracted from each patient’s ultrasound RF data.

The diagram of QUS, core-to-margin, GLCM based texture, and texture-derivative parameter estimation 
from the ultrasound data are summarized in Supplementary Fig. 1.

Classification and statistical analysis
ANOVA followed by a Bonferroni multiple comparisons Tukey test was used to compare the extracted means of 
QUS parameters, texture features, texture-derivative features, and tumour molecular subtype between responders 
and non-responders. To develop a tumour response prediction model, a nested cross-validation was performed 
on the parameters determined from ultrasound data31,32. The nested cross-validation is performed in two layers 
to achieve training and validation separation. In this study, leave-one-out and holdout cross-validation were 
investigated. In leave-one-out nested cross-validation (Fig. 1a), in the outer layer, one sample was separated for 
validation, and the rest of the data was used to develop a model. In the internal layer, the remaining 207 samples 
were used for feature selection and classifier parameter tuning. A developed model was then validated with one 
left sample, which was split at the beginning. This process was repeated 208 times by leaving different one sample 
for validation and by using a different 207 samples to develop a new model from scratch. The overall performance 
was then calculated as a mean of classification performances of the 208 separately developed models on different 
one sample left for validation, which was not involved in developing the models. In hold-out cross-validation 

Figure 1.   Validation method. (a) Nested leave-one-out cross-validation method. Nested cross-validation 
is performed in two layers to achieve training and validation separation. In the outer layer one sample was 
separated for validation and the rest of the data was used to develop a model. In the inner layer, the training 
data was used to develop classification model. Finally obtained model was tested with test data set. (b) Hold-
out method. Here data set is divided into test and training data randomly. The training was used to develop 
classification model and tested with test data set. This process was repeated 10 times and average performance 
was calculated.
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(Fig. 1b), 20% and 10% of the data was separated for validation, and 80% and 90% of the data, respectively, were 
used for model development. This process was repeated 10 times by randomly selecting 20%, and 10% of the 
data for validation and 80% and 90% for training process, respectively. Finally, overall performance was then 
calculated as a mean of classification performances of the 10 separately developed models. Classification metrics 
that include sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (PPV) 
and AUC were estimated to assess model performance.

In order to detect tumour response, a multi-feature response classification was performed using k-nearest 
neighbour (KNN) and support vector machine (SVM) with radial basis function (RBF) kernel33 methods. In 
KNN model development, the number of nearest-neighbor, k, was set to an odd number (k = 1, 3, and 5) to avoid 
tied classes in this binary class case. Finally, the optimal number of nearest neighbour was tuned to achieve the 
best classification performance. In SVM-RBF model development, two classifier parameters including, the pen-
alty for misclassification (C) and the width of a radial basis function (γ) were tuned. Here, optimal values for these 
two parameters were selected by grid search with the range of C = 28, 29, 210,…,215 and γ = 2–18, 2–17, 2–16,…2–5.

The best feature subset was selected from training data set based on the maximal relevance minimal redun-
dancy (mRMR) criterion34. This resulted in a reduced train dataset that consists of the 50 best mRMR features. 
From these best mRMR features, the optimal features were selected using the sequential-forward selection (SFS) 
method. To avoid the curse of dimensionality, the maximum number of features to select was set to 10 based 
on rule of thumb35. We implemented the synthetic minority over-sampling technique (SMOTE) to account for 
class imbalance36. Tumour response prediction model development was performed on this balanced reduced 
training dataset. The flow diagram of the training process, including feature selection, data balancing, and feature 
selection algorithm, is shown in Supplementary Fig. 2.

Results
Patient, tumour and treatment characteristics
The clinical and pathological characteristics of the patients involved in this study are summarized in Table 1. The 
average age of patients was 51 ± 11 years. The average tumour size along the longest axis before treatment was 
5.0 ± 2.7 cm. Among patients, 89% had invasive ductal carcinoma and 4% had lobular carcinoma. Five percent 
(5%) of patients had grade I tumours, 38% had grade II tumours, and 49% had grade III tumours incorporating 

Table 1.   Clinical and pathologic characteristics of breast cancer patients receiving NAC.

Characteristics R (N = 161) NR (N = 47) All (N = 208)

Age (year) 50 ± 12 52 ± 11 51 ± 11

Menopause

 Postmenopausal (%) 41 36 40

 Premenopausal (%) 47 57 52

 Perimenopausal (%) 12 7 8

Initial tumour size (cm) 5.2 ± 2.8 5.0 ± 2.6 5.0 ± 2.7

Histology

 IDC (%) 93 83 92

 ILC (%) 3 9 4

 IMC (%) 4 8 4

Group Stage

 Stage II (%) 50 61 52

 Stage III (%) 48 37 46

 Not reported (%) 2 2 2

Tumour Grade

 Grade I (%) 6 9 5

 Grade II (%) 34 43 38

 Grade III (%) 50 47 49

 Not reported (%) 10 1 8

Molecular Subtype

 ERBB2 + (%) 14 0 11

 Triple Negative (%) 25 26 25

 LuminalA (%) 36 64 42

 LuminalB (%) 25 11 22

Treatment

 ACT (%) 53 68 59

 FECD (%) 30 23 28

 Others (%) 17 9 13

Residual tumour size (cm) 1.8 ± 2.2 5.9 ± 4.5 2.7 ± 3.4
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patients with locally advanced and earlier-stage breast cancer receiving neoadjuvant chemotherapy treatment. 
All of the patients included in this analysis had completed systemic therapy as planned. The most common 
chemotherapy regimen used was AC-T (Adriamycin, Cyclophosphamide, and Paclitaxel) in 59%, followed 
by FEC-D (5-Fluorouracil, Epirubicin, Cyclophosphamide, and Docetaxel) in 28%. Along with neoadjuvant 
chemotherapy, 31% of patients received trastuzumab in the neoadjuvant setting. Pathological complete response 
(pCR) was seen in 20% patients. The average tumour size along the longest axis after treatment was 2.7 ± 3.4 cm. 
According to response grading, 161 and 47 patients were detected as responders and non-responders to neo-
adjuvant chemotherapy treatment, respectively. Tumours were grouped based on molecular subtype, including 
ERBB2 + (ER−, PR−, HER2+), triple negative (ER−, PR−, HER2−), Luminal-A (ER+ and/or PR+, HER2−), and 
Luminal-B (ER+ and/or PR+, HER2+). Among responding patients, 14%, 25%, 36%, and 25% were ERBB2+, 
triple negative, Luminal-A, and Luminal-B, respectively. Among non-responding patients, 0%, 26%, 64%, and 
11% were ERBB2+, triple negative, Luminal-A, and Luminal-B, respectively. The 5-year recurrence-free sur-
vival (RFS) for the responders and non-responders was 82% and 65%, respectively, with a p value of 0.0002. The 
5-years disease free survival rate calculated for ERBB2+ triple negative, Luminal-A, and Luminal-B molecular 
type breast cancer from the patient population were 85%, 76%, 81%, and 75%, respectively. They were not sig-
nificantly different (p = 0.96). All patient characteristics, tumour properties, hormone receptor overexpression, 
and treatments administered details are presented in Supplementary Table 1.

Quantitative ultrasound, texture and texture‑derivative parameters
Representative ultrasound B-mode, QUS parametric, and QUS-texture images corresponding to responding 
and non-responding patients, acquired prior to chemotherapy treatment, are displayed in Fig. 2. MBF and AAC 
parametric images demonstrated less tissue stiffness in both core and margin regions for responders compared to 
non-responders. ASD parametric images exhibited higher scatter diameters for responders than non-responders. 
A total of 201 features were determined from RF data acquired from breast cancer patients. Statistical analysis 
using unpaired t tests was performed to compare those QUS, core-to-margin, texture, and texture-derivative 
features between responders and non-responders acquired before treatment. Among the 201 features, 9 exhib-
ited significant differences (p < 0.05) between responder and non-responder groups. The box plots for those 
features with significant differences, along with an overlaid scatterplot of the distribution of responding and 
non-responding patient values, are presented in Supplementary Fig. 3. The backscatter intensity parameters 
from the tumour core and margin regions, including Core MBF, Margin MBF, and Core AAC, were significantly 
higher in non-responders, as displayed in Fig. 2. The core-to-margin related parameters, including CMR-MBF, 
and CMR-AAC, were significantly lower and CMCR-AAC were significantly higher in responders, demonstrat-
ing a significantly difference in tissue stiffness between tumour core and margin region and less variation within 
the tumour core region in responder group, as visualized in Fig. 2. Texture-derivative parameters derived from 
scatter size parametric images from tumour core region, including Core ASD-ENE-HOM, Core ASD-ENE-CON, 
and Core ASD-ENE-ENE showed significant difference between two response groups, demonstrating the exist-
ence of orderly organized scatterers with broader varying sizes within tumour core region in responder group, 
as shown in Fig. 2.

Classification performances
Two different classifiers were investigated with leave-one-out and hold-out cross-validation approaches, and their 
performances were compared. Figure 3 shows bar plots illustrating the classification performance of the models 
developed using KNN and SVM-RBF classifiers with the following feature sets: (I) features including mean QUS, 
texture and core-to-margin parameters from core and margin region, (II) features including texture-derivative 
parameters from core and margin, (III) features including tumour molecular subtype, (IV) features including 
mean QUS, texture, texture-derivative, core-to-margin parameters from core and margin region, (V) features 
including mean QUS, texture, core-to-margin parameters from core and margin region, and tumour molecu-
lar subtype, (VI) features including texture-derivative parameters from core and margin region, and tumour 
molecular subtype, and (VII) features including all features with leave-one-out cross-validation. The algorithms 
developed using KNN provided the best classification performance from the combination of feature sets. Table 2 
presents the optimal features selected using KNN methodology. In the classification algorithm development 
using the KNN classifier, most features were selected from tumour core region. Combining tumour molecular 
subtype with the mean QUS and texture features increased the classification performance to an accuracy of 72%. 
The best performance obtained using KNN was from the feature set including texture-derivative parameters and 
molecular subtype (VI) with a sensitivity of 74%, specificity of 80%, accuracy of 79%, PPV of 52%, NPV of 91% 
and AUC of 0.76. In compareison to the KNN algorithm, the SVM-RBF classifier performed well in differentiat-
ing responder and non-responder groups from all type of feature sets. The best performances were obtained from 
three feature sets using an SVM-RBF classifier in differentiating responder and non-responder groups (feature 
sets IV, VI and VII). Table 3 displays optimal features selected from these feature sets during the training process 
in classification model development using SVM-RBF classifier. The parameters determined from ultrasound RF 
data, including mean QUS, core-to-margin, texture and texture-derivative parameters could alone differentiate 
the response groups with a sensitivity of 80%, specificity of 80%, accuracy of 80%, PPV of 54%, NPV of 93%and 
AUC of 0.83 using SVM-RBF (feature set IV). Combining molecular subtype information with these parameters 
slightly increased the classification performance to a sensitivity of 87%, specificity of 81%, accuracy of 83%, and 
AUC of 0.87 (feature set VII). Similar to the KNN model, the best performance using SVM-RBF was obtained 
from a feature set including texture-derivative parameters and molecular subtype (VI) with a sensitivity of 79%, 
specificity of 86%, accuracy of 85%, PPV of 63%, NPV of 93% and AUC of 0.87. The summary of the classification 
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performance results using KNN and SVM-RBF classifier based on various type of feature set with leave-one-out 
cross-validation approach is presented in Supplementary Tables 2a and 2b, respectively.

Figure 4 displays the average performance on the training and test data sets using mean QUS, core-to-margin, 
texture, texture-derivative and molecular subtype with 10 hold-out validations, employing KNN and SVM-RBF 
algorithms for holding out 20% of data, and 10% of data. In a hold-out cross-validation approach, the model 
developed using KNN and SVM-RBF classifier exhibited similar performance in differentiating response groups.

For the 20% hold-out cross-validation, the classification accuracy and AUC for the KNN algorithm were 
70 ± 7% and 0.71 ± 0.07, respectively, from the training set, and 68 ± 4% and 0.69 ± 0.02% from the test set. The 
bias and variance errors for this model were 30% and 2%, respectively. Similarly, the classification accuracy and 
AUC for the SVM-RBF algorithm were 68 ± 2% and 0.73 ± 0.04 from training set, 71 ± 4% and 0.71 ± 0.04% from 
independent test set, respectively. The bias and variance errors for this model were 32% and 3%, respectively.

For the 10% hold-out cross-validation, the classification accuracy and AUC for the KNN algorithm were 
77 ± 2.5% and 0.76 ± 0.05from the training set, 81 ± 2.2% and 0.80 ± 0.03% from the test set, respectively. The bias 
and variance errors for this model were 21% and 3%, respectively. Similarly, the classification accuracy and AUC 
for the SVM-RBF algorithm were 70 ± 0.6% and 0.72 ± 0.03 from the training set, 71 ± 2.5% and 0.71 ± 0.07% from 

Figure 2.   QUS and Texture images of response group. Representative B-mode, MBF, AAC, ASD, MBF-CON, 
SI-COR, and ASD-ENE parametric and texture images with tumour core and margin regions of two responders 
and non-responders. MBF: Mid-band fit; AAC: average acoustic concentration; ASD: average scatterer diameter; 
SI: spectral intercept; CON: Contrast; COR: correlation; ENE: energy.
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Figure 3.   Summary of classification performance with leave-one-out cross-validation. Tumour response 
classification results obtained using (a) KNN and (b) SVM-RBF algorithms based on seven feature set types 
using leave-one-out cross-validation approach. The classification algorithms developed using both KNN and 
SVM-RBF classifiers exhibited the best performance with the feature set including QUS-texture-derivative 
parameter and tumour molecular subtype (Feature Set VI). Feature Set I: QUS + Texture + Core-to-Margin; 
Feature Set II: Texture Derivative; Feature Set III: Molecular Subtype; Feature Set IV: QUS + Texture + Core-
to-Margin + Texture-Derivative; Feature Set V: QUS + Texture + Core-to-Margin + Molecular Subtype; Feature 
Set VI: Texture Derivative + Molecular Subtype; Feature Set VII: QUS + Texture + Core-to-Margin + Texture-
Derivative + Molecular Subtype.

Table 2.   Optimal features selected for tumour response classification using KNN algorithm developed 
based on ultrasound data (Feature Set IV), ultrasound data + molecular subtype (Feature Set VII), and the 
best performed feature set (Feature Set VI) with leave-one-out cross validation approach. Feature Set IV: 
QUS + Texture + Core-to-Margin + Texture-Derivative; Feature Set VI: Texture-Derivative + Molecular Subtype; 
Feature Set VII: QUS + Texture + Core-to-Margin + Texture-Derivative + Molecular Subtype.

No Only ultrasound data (Feature Set IV) Ultrasound data + Molecular subtype (Feature Set VII) Best model feature set (Feature Set VI)

1 Core ASD ERBB2 +  ERBB2 + 

2 Core ASD-COR Luminal-B Luminal-B

3 Core ASD-ENE Core ASD-HOM-COR Luminal-A

4 Core MBF-HOM-HOM Luminal-A Core ASD-ENE-ENE

5 Core SS-COR-ENE Core SS-HOM-ENE Core ASD-HOM-COR

6 CMR-MBF Core ASD-ENE Margin ASD-ENE-ENE

7 Core SS-HOM-ENE Core MBF Core SS-HOM-ENE

8 Core AAC-HOM Margin MBF-CON-COR Core ASD-ENE-HOM

9 Core SI-CON Core AAC-COR Core SI-CON-COR

10 CMR-AAC​ Core MBF-HOM-HOM Margin MBF-CON-COR
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independent test set, respectively. The bias and variance errors for this model were 30% and 2%, respectively. The 
summary of classification performance results with 20% (80% training) and 10% (90% training) testing hold-out 
approach is presented in Supplementary Table 3a and 3b, respectively.

Discussion
This study demonstrated, for the first time, the potential of combining quantitative ultrasound, texture, texture 
derivative, and molecular subtype analysis techniques to predict cancer treatment responder and non-responder 
among breast cancer patients before starting neo-adjuvant chemotherapy. All patients underwent a core needle 

Table 3.   Optimal feature selected for tumour response classification using SVM-RBF algorithm developed 
based on ultrasound data (Feature Set IV), ultrasound data + molecular subtype (Feature Set VII), and the 
best performed feature set (Feature Set VI) with leave-one-out cross validation approach. Feature Set IV: 
QUS + Texture + Core-to-Margin + Texture-Derivative; Feature Set VI: Texture-Derivative + Molecular Subtype; 
Feature Set VII: QUS + Texture + Core-to-Margin + Texture-Derivative + Molecular Subtype.

No Only ultrasound data (Feature Set IV) Ultrasound data + Molecular subtype (Feature Set VII) Best model feature set (Feature Set VI)

1 Core MBF-ENE-ENE Luminal-A Luminal-A

2 CMCR-SI Core AAC-COR Core SI-COR-HOM

3 CMCR-AAC​ CMCR-AAC​ Margin AAC-CON-COR

4 CMCR-ASD Core SI-COR-HOM Core MBF-CON-COR

5 Core SS-COR-ENE CMCR-SI Core SI-COR-ENE

6 Margin AAC-COR-HOM’ Core SI-COR Margin AAC-COR-CON

7 CMR-SI Core MBF-ENE Margin MBF-CON-COR

8 Core MBF-ENE-COR Core SI-COR-ENE Core SS-COR-CON

9 Margin MBF Core MBF-CON-COR Core MBF-ENE-HOM

10 Margin MBF-CON-COR CMCR-ASD Margin AAC-COR-HOM

Figure 4.   Summary of classification performance with hold-out validation. Average tumour response 
classification results obtained from 10 hold-out data set using KNN and SVM-RBF algorithms. The top panel (a) 
shows data with 20% testing (80% training) and the bottom plot (b) with 10% testing (90% training) hold-out 
approaches. The classification performance with 90% training was approximately similar to those with leave-
one-out approach with bias and variance errors of 21% and 3%, respectively. 
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biopsy to confirm a cancer diagnosis and to determine tumour histological subtype and molecular subtype 
before treatment. A total of 201 features were determined from ultrasound data acquired from patients, includ-
ing 5 QUS parameters from tumour core and tumour margin, 20 texture parameters from core and margin, 80 
texture-derivative parameters from core and margin, 10 core-to-margin parameters, and tumour attenuation 
before treatment.

To understand the relationship of QUS, texture, and texture-derivative parameters determined from ultra-
sound-RF data with treatment response, we investigated the correlation between these features and patient 
tumour response. Among all QUS parameters, the backscatter intensity-related parameters from tumour core and 
margin regions, as well as ore-to-margin parameters, revealed significant differences between response groups. 
Additionally, specific texture-derivative features from the tumour core scatterer size—energy feature parametric 
images exhibited significant differences. Generally, backscatter intensity-related parameters, including the MBF 
and AAC, are strongly related to scatter number density and elastic properties15,30,37. In this study, the range of 
scatter size determined from ultrasound data acquired in both tumour and margin region was approximately 
80–182 µm, representing lobule diameters observed in histopathological images. These results suggest that these 
two different type of responding group have different lobular number density in both tumour core and sur-
rounding regions and different uniformity in size distribution in core region. These finding are reflected in the 
MBF and AAC parametric images constructed from responder data, demonstrating less tissue stiffness in both 
tumour core and margin regions compared to non-responder group (Fig. 2). Significant differences in backscat-
ter parameters estimated from the margin region, as well as parametric image texture and texture-derivative 
parameters between two response groups, reveal the existence of microscopic infiltration from the tumour core 
to the surrounding region, particularly in non-responding patients. This is visualized in MBF and AAC images 
by significantly different values between core and margin region in responder group and no different in the 
non-responder group. Among molecular subtypes, majority (64%) of Luminal-A type tumours were in non-
responding group, and none of the ERBB2+ type tumours were in non-responding group. Previous studies have 
demonstrated that molecular subtype is a powerful independent predictor of chemotherapy response rate and 
overall survival. There were reported significant difference in response rates and overall survival of breast cancer 
patients with different molecular subtypes, including HER2+, triple negative, and ER and/or PR+ with HER2- 
status27. Another study reported a lower pCR rate in Luminal-A and higher in Her2+ disease for neoadjuvant 
chemotherapy38. This was reflected in our study population. However, the calculated survival rate of these four 
molecular subtype tumour did not reveal the significant difference between these types. This is due to lack of 
sufficient sample in each molecule subtypes from our breast cancer patient population. Nevertheless, compared 
to responder group, number of Luminal A type tumour was higher and Her2+ type tumour was lower (12%) in 
our non-responder population.

In this study, multi-feature classification analyses were conducted on different feature sets, including mean 
QUS & texture from core and margin, texture-derivative parameters from core and margin, molecular subtype, 
and combination of these feature sets. Models developed from mean QUS & texture, and texture-derivative 
parameter exhibited similar performances with accuracies of approximately 69% and 70% using KNN and 
SVM-RBF, respectively. These performances were improved by including molecular subtype. The best perfor-
mances were achieved from the feature set including texture-derivative parameters and molecular subtype, with 
accuracies of 79% and 85% using KNN and SVM-RBF, respectively. Comparing the performance of algorithms 
using two different classifiers, the better performances were obtained with the model developed using an SVM-
RBF classifier based on all feature sets. Mostly, core-to-margin parameters that include core and margin region 
are selected (Table 3). This confirms the result presented in our previous finding where it was reported that the 
existence of microscopic extension in tumour surrounding regions affect the tumour response to NAC. The best 
classification performance was obtained by the combination of texture-derivative parameters from tumour core 
and margin, and molecular subtype, particularly texture-derivative parameters from backscatter intensity-related 
parametric maps, and Luminal-A type, with a sensitivity of 79%, specificity of 86%, accuracy of 85%, PPV of 
63%, NPV of 93%, and AUC of 0.87. This agrees with a previous finding that response rate is significantly lower 
for Luminal-A type tumours compared to other molecular subtypes, and molecular subtype is one of the key 
predictor for treatment response. Combining molecular subtype with intra-tumoural heterogeneity reflected by 
texture-derivative parameters could easily predict the response type before treatment. The PPV and NPV values 
reveal that the our model has 63% chance in predicting non-responding patient and 93% chance in predicting 
responding patient accurately. Even though the change of predicting non-responder is moderate, there is a higher 
change of predicting responder. This finding reveals that, based on our tumour response model performance, 
treatment for the responding patient will not be changed from standard neoadjuvant treatment procedure. The 
lower value of PPV is due limited number of non-responding patient, which means the prevalence value is 22% 
in our patient population. Several previous studies reported that pathological response is a prognostic indicator 
for long-term, disease-free and overall survival39. This was confirmed in this current study. As expected, clinical 
outcomes were significantly different between the responders and non-responders, as defined by the modified 
response grading system criteria and demonstrated in survival plots (Fig. 5). The obtained models could dif-
ferentiate two response-type patients’ outcomes with good agreement with those based on histopathology and 
clinical outcomes determined after surgery. This result implies that the proposed classification models, based on 
combined quantitative ultrasound-texture biomarkers and molecular subtype as early survival-linked surrogates 
of response to cancer-targeting therapies, could facilitate switching from an inefficient treatment regimen to a 
more effective one on an individual patient-basis before starting treatment.

For the generalization of the proposed tumour response prediction models using KNN and SVM-RBF classi-
fiers, we investigated their performance with a hold-out cross-validation approach. The classification performance 
with 20% testing and 80% training hold-out was, as expected, lower than result obtained with leave-one-out 
cross-validation approach, with bias and variance errors approximately at 30% and 2% respectively. However, 
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the performance using KNN classifier with 10% testing and 90% training hold-out was approximately similar 
to that with leave-one-out approach, with bias and variance errors approximately at 21% and 3% respectively. 
The range of bias and variance errors from 10 repeated 20% testing hold-out validation was 31 to 35% and 1 
to 11%, respectively. For 10 repeated 10% testing hold-out validations, the range was15 to 25% and 0.3 to 9%, 
respectively. This high variance and bias with 20% testing holdout reveal that the number of sample in training 
process is not sufficient enough to perform an adequately powered hold-out validation. This suggest that for 
our current patient population size, leave-one-out is the better cross-validation choice to investigate the clas-
sification performance of the response group based on combined quantitative ultrasound, texture-derivative 
and molecule subtype analyses.

In a previous study investigating tumour response prediction with a population of 56 patient based on mean 
QUS, texture, and core-to-margin parameters from core and margin regions, a classification performance with 
accuracy of 88% was reported24. In another study involving 100 patient, tumour response prediction was per-
formed based solely on mean QUS, texture, and texture-derivative parameters from tumour core region, report-
ing a performance accuracy of 82%18. However this study showed slightly lower performance with those feature 
sets. This discrepancy is attributed to the increase variety of tissue microstructures in training sample population 
resulting from the inclusion of more patients in the model development. By combing tumour molecular subtype 
with mean QUS, texture and texture-derivative parameters, a significant improvement in the performance of 
tumour response prediction could be achieved.

In conclusion, this work demonstrates that combining texture analysis of quantitative ultrasound features with 
molecular subtype can accurately detect tumour response before neoadjuvant chemotherapy using a machine 
learning approach. While the current population appears reasonably good for tumour response prediction with 
leave-one-out cross-validation approach, a larger cohort of patients in the future should improve the generaliz-
ability and robustness of the prediction, even using hold-out validation approach. Nevertheless, this study shows 
that molecular and QUS-texture markers can serve as a prior treatment survival-linked surrogate of response to 
cancer-targeting therapies—leading the way towards personalized medicine and facilitating the selection of an 
appropriate treatment regimen on an individual patient basis.

Figure 5.   Recurrence free survival curves for neo-adjuvant chemotherapy treatment responders and non-
responders. Patients were differentiated based on clinical/pathology after treatment, and also based on baseline 
texture-derivative parameters combined with molecular subtype using the KNN and SVM-RBF algorithm.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22687  | https://doi.org/10.1038/s41598-023-49478-3

www.nature.com/scientificreports/

Data availability
Data collected and analyzed in this study are available from the Sunnybrook Research Institute Research Ethics 
Board approved study “Pilot Investigation of Ultrasound Imaging and Spectroscopy and Ultrasound Imaging of 
Vascular Blood Flow as Early Indicators of Locally Advanced Breast Cancer Response to Neoadjuvant Treatment”. 
Since this is patient data, the authors are legally bound to keep it confidential. Data can be made available upon 
request and review by Institutional Review Board (IRB). Data requests may be sent to Dr. Kullervo Hynynen, 
Vice-president, Research & Innovation, Sunnybrook Research Institute (khynynen@sri.utoronto.ca).
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