Received: 22 September 2022

Revised: 6 June 2023

W) Check for updates

Accepted: 10 June 2023

DOI: 10.1002/mp.16574

RESEARCH ARTICLE

MEDICAL PHYSICS

A hierarchical self-attention-guided deep learning
framework to predict breast cancer response to
chemotherapy using pre-treatment tumor biopsies

Khadijeh Saednia™? | William T. Tran?3*

"Department of Electrical Engineering and
Computer Science, Lassonde School of
Engineering, York University, Toronto, Ontario,
Canada

2Department of Radiation Oncology,
Sunnybrook Health Sciences Center, Toronto,
Ontario, Canada

3Department of Radiation Oncology,
University of Toronto, Toronto, Ontario,
Canada

4Temerity Centre for Al Research and
Education in Medicine, University of Toronto,
Toronto, Ontario, Canada

5Physical Sciences Platform, Sunnybrook
Research Institute, Toronto, Ontario, Canada

Correspondence

Dr. Ali Sadeghi-Naini, Department of Electrical
Engineering and Computer Science,
Lassonde School of Engineering, York
University, 4700 Keele Street, Toronto, ON
M3J 1P3, Canada.

Email: asn@yorku.ca

| Ali Sadeghi-Naini®?*°

Abstract

Background: Pathological complete response (pCR) to neoadjuvant
chemotherapy (NAC) has demonstrated a strong correlation to improved
survival in breast cancer (BC) patients. However, pCR rates to NAC are less
than 30%, depending on the BC subtype. Early prediction of NAC response
would facilitate therapeutic modifications for individual patients, potentially
improving overall treatment outcomes and patient survival.

Purpose: This study, for the first time, proposes a hierarchical self-attention-
guided deep learning framework to predict NAC response in breast cancer
patients using digital histopathological images of pre-treatment biopsy speci-
mens.

Methods: Digitized hematoxylin and eosin-stained slides of BC core needle
biopsies were obtained from 207 patients treated with NAC, followed by surgery.
The response to NAC for each patient was determined using the standard clin-
ical and pathological criteria after surgery. The digital pathology images were
processed through the proposed hierarchical framework consisting of patch-
level and tumor-level processing modules followed by a patient-level response
prediction component. A combination of convolutional layers and transformer
self-attention blocks were utilized in the patch-level processing architecture to
generate optimized feature maps. The feature maps were analyzed through
two vision transformer architectures adapted for the tumor-level processing and
the patient-level response prediction components. The feature map sequences
for these transformer architectures were defined based on the patch positions
within the tumor beds and the bed positions within the biopsy slide, respectively.
A five-fold cross-validation at the patient level was applied on the training set
(144 patients with 9430 annotated tumor beds and 1,559,784 patches) to train
the models and optimize the hyperparameters. An unseen independent test set
(63 patients with 3574 annotated tumor beds and 173,637 patches) was used
to evaluate the framework.

Results: The obtained results on the test set showed an AUC of 0.89 and
an F1-score of 90% for predicting pCR to NAC a priori by the proposed
hierarchical framework. Similar frameworks with the patch-level, patch-level +
tumor-level, and patch-level + patient-level processing components resulted
in AUCs of 0.79, 0.81, and 0.84 and F1-scores of 86%, 87%, and 89%,
respectively.
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1 | INTRODUCTION

Breast cancer (BC) is the most common cancer in
women and the second leading cause of cancer-
related death worldwide.! About 20% of breast cancer
patients are diagnosed with locally advanced breast
cancer (LABC)23 LABC includes stage Ill and a sub-
set of stage 1IB BC and may extend to the skin or
chest wall or involve the axillary lymph nodes*% LABC
patients typically have a poorer prognosis than early-
stage BC due to the high risk of cancer progression,
local recurrence and metastasis.”° The standard of
care to treat LABC involves neoadjuvant chemotherapy
(NAC) followed by surgery and in select cases, adjuvant
therapies, such as radiotherapy, endocrine therapy and
targeted drugs.'®"" Despite multimodal treatment plans,
LABC patients exhibit low overall survival,and outcomes
are highly dependent on tumor response to NAC'?,
thus pathological response is correlated to survival.'®
However, only about 30% of LABC patients achieve
a pathological complete response (pCR) to NAC.'#1°
The definitive method for pathological assessment of
NAC response is histopathology on the surgical exci-
sions. This limits the opportunity to modify NAC based
on tumor response. Therefore, predicting chemother-
apy response either before or during early intervals
of NAC could improve therapy outcomes by facilitating
response-guided drug treatments.'6”

Prior research has explored various quantitative imag-
ing approaches for assessing chemotherapy response
in breast cancer patients at the time of diagnosis or early
after starting treatments.'’2° Quantitative biomark-
ers derived using different medical imaging modalities,
including ultrasound, diffuse optical imaging, mag-
netic resonance imaging (MRI), and positron emission
tomography (PET), have shown promise in charac-
terizing breast cancer in terms of responsiveness to
chemotherapy, particularly when coupled with machine
learning (ML) models?'2* However, the histopatholog-
ical assessment remains the gold standard to report
a cancer diagnosis and characterize tumors to steer
treatment decisions. In a recent study, digitized diag-
nostic tumor biopsies were applied to predict response
to NAC in BC patients?® Several pathomic features
were extracted from segmented nuclei in digital pathol-
ogy images. A gradient boosting machine (GBM) was
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Conclusions: The results demonstrate a high potential of the proposed hier-
archical deep-learning methodology for analyzing digital pathology images of
pre-treatment tumor biopsies to predict the pathological response of breast

attention mechanism, breast cancer, deep learning, digital pathology (DP), neoadjuvant chemother-

adapted for NAC response prediction. The results show
the potential of quantitative information derived from
the pre-treatment digital pathology images for predicting
NAC outcomes.

Recent research has explored the efficacy of deep
learning (DL) methods in various medical image anal-
ysis applications?6?” Studies have investigated the
performance of several DL frameworks in analyzing
histopathological images for tumor grading and subtyp-
ing and predicting patient survival?8-3" These studies
have demonstrated the potential of the DL models and,
specifically, the deep convolutional networks in digital
pathology image analysis. However, the size of whole
slide images (WSIs) remains a constraint in training the
DL models due to memory limitations. Specifically, devel-
oping adequate DL models for analyzing the WSIs at
high magnification is challenging as the high-resolution
WSiIs can be as large as 150000 x 150000 pixels.2232
This issue can be addressed by resizing (downscaling)
the WSIs or extracting small patches for analysis by the
DL models. Downscaling reduces the image resolution
and potentially the efficacy of the information derived by
the model. The patching approach requires the devel-
opment of efficient strategies for fusing the patch-level
information while considering the global dependencies
to make relevant conclusions on the WSI level.

Several recent studies have focused on developing
efficient DL models for image analysis and classification
in computer vision applications. The current state-
of-the-art models are categorized into three general
approaches. The first category includes the convo-
lutional neural network (CNN) models. The Xception
model* a well-known model in this group, is an
extended version of the Inception-V3 architecture®®
in which the Inception modules have been replaced
by depth-wise separable convolutions. This model
could outperform the Inception-V3 model in classi-
fying the ImageNet dataset3® The second category
comprises the transformers®’ that utilize an encoder-
decoder architecture with a self-attention mechanism.3®
The self-attention mechanism in the transformers dif-
ferentially weights the significance of each part of
the input data for the target analysis. The recently
introduced vision transformer (ViT) architecture®® has
demonstrated high performance in extracting the global
relations in the input images.*® However, compared to
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the CNN-based models, this architecture requires addi-
tional training data to yield adequate generalizability”*’
The last category includes the networks that combine
the convolutional layers with the attention mechanisms.
The convolutional block attention module (CBAM)*?
a recently proposed attention mechanism, can infer
independent channel and spatial attention maps. The
CoAtNet*? is the most recent state-of-the-art architec-
ture that stacks depth-wise convolutional layers and the
self-attention mechanism to improve the generalizability
of the model*3

This study proposes a hierarchical attention-guided
deep learning framework to predict pCR to NAC in
breast cancer patients using digital histopathologi-
cal images of pre-treatment biopsy specimens. The
proposed model consists of three modules, includ-
ing patch-level processing, tumor-level processing, and
patient-level response prediction. The hierarchical flow
presented in this study could overcome the difficulty
of deriving the global relations between different tumor
areas in high-resolution WSIs while utilizing the local
information within the tumor regions in the analysis.

2 | MATERIALS AND METHODS

21 | Dataset

This retrospective study was conducted following institu-
tional ethics review board (IRB) approval at Sunnybrook
Health Sciences Centre, Toronto, Canada. Patients were
included in the study based on the following criteria:
biopsy-confirmed diagnosis of invasive breast can-
cer, age (18+), and treatment with Anthracycline- and
Taxane-based neoadjuvant chemotherapy followed by
surgery (any type). There were 207 patients identified
and included in the study. The mean age of patients
was 51.1 + 10.4 years (range: 28 — 79 years). The mean
tumor size was 5.01 +2.9 cm. The clinical nodal (N)
stage was NO (no positive lymph nodes) for 24.6%
(n = 51); N1 (1 —3 positive lymph nodes) for 66.2%
(n 137); N2 (4 — 9 positive lymph nodes) for 8.2%
(n = 17); and N3 (>ten positive lymph nodes) for
1% (n = 2) of patients. Among 207 patients, 62.3%,
54.1%,62.3% and 41.5% had tumors with an ER+, PR+,
and HER2+ receptor status, respectively. Most of the
patients (n = 192; 93%) had invasive ductal carcinoma
(IDC), while those with invasive lobular carcinoma (ILC)
constituted a smaller cohort (n = 15;7%).

All patients had a breast core needle biopsy before
NAC with a pathological review as part of the standard
of care. The formalin-fixed paraffin-embedded (FFPE)
blocks containing core biopsy specimens were micro-
tomed into 4 um sections. The specimen sections were
prepared onto histopathology slides and stained with
hematoxylin and eosin (H&E). Digital histopathological
images of the H&E-stained slides were acquired using a

digital pathology imaging system (Huron Digital Pathol-
ogy, St. Jacob’s, Canada). The images were acquired at
40X (pixel size: 0.2 um) for all patients. The digital WSIs
were manually reviewed for artifacts or occlusions within
the specimen before analysis, and any slides associated
with a distorted or blurry image were re-imaged.

The treatment response was assessed for each
patient after surgery and categorized into pathological
complete response (pCR) versus pathological non-
complete response (non-pCR; i.e., exhibiting residual
disease) as ground truth labels for evaluating the devel-
oped models. A standard assessment method using the
residual cancer burden index (RCBI) was applied to
assess treatment response. An RCBI score of 0 (i.e.,
pCR) was defined as the absence of residual inva-
sive and nodal disease** Patients who demonstrated
residual disease were classified as non-pCR (i.e.,
RCBI > 0)** All pathology reviews (pre-treatment and
post-surgery histopathology) were performed by board-
certified breast pathologists as part of the patient’s
standard of care. The pathological evaluations after
surgery demonstrated 25.2% (n = 52) of the patients
with a pCR and 74.8% (n = 155) with a non-pCR.

2.2 | Preprocessing and dataset splitting
Using the Sedeen software package,*® an expert pathol-
ogist annotated the tumor bed areas on the WSiIs.
The tumor bed annotations were pre-processed on the
three-channel RGB images for patch extraction. Tumor
margins were included, when required, to obtain non-
overlapping patches with a size of 512 x 512 pixels
(pixel size: 0.2 um) from the annotated tumor regions.
However, only the patches with more than 10% tumor tis-
sue and less than 10% white background were retained
for the study (Figure 1).In total, 1, 733, 421 patches were
included in this study.

Out of the 207 patients in this study, 155 and 52
patients were labeled as non-pCR and pCR, respec-
tively. The number of patches for each patient varied
from 30 to 14418 (median = 1755). The non-pCR and
pCR classes included 1,423,210 and 310, 211 patches,
respectively. As such, the ratio of the pCR to non-pCR
class at the patient and patch level was 25.2% and 17.9%,
respectively. Figure 2a shows the distribution and quar-
tiles of the number of patches per patient in the pCR
and non-pCR classes of the dataset. A stratified ran-
dom splitting approach was applied to split the data at
the patient level into the training (70%; n = 144 with
9,430 annotated tumor beds and 1,559,784 patches)
and test sets (30%;n = 63 with 3,574 annotated tumor
beds and 173, 637 patches). The stratified random split-
ting was performed considering the response label and
the number of extracted patches for each patient. The
first quartile, median and third quartile of the number
of patches in each response class (pCR and non-pCR)
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Overview of preprocessing steps. The tumor beds were annotated (green contours) by an expert pathologist. Patches (size =

512 x 512 pixels) were extracted from the tumor beds. Patches with more than 10% tumor tissues and fewer than 10% white background were

retained for the study.
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Class Criterion Stratifying bin number:
(pPCR =0, non-pCR=1) Discretized number of patches 4XClass + criterion

0 0 (< quartile1) 0

0 1 (>quartile1, <median) 1

0 2 (>median, <quartile3) 2

0 3 (>quartile3) 3

1 0 (< quartile1) 4

1 1 (>quartile1, <median) 5

1 2 (>median, <quartile3) 6

1 3 (>quartile3) 7

Stratified random data splitting at the patient level based on the number of patches in each dataset class. (a) The box plot

presents the distribution and quartiles of the number of patches per patient in each class. (b) The criterion for stratification.

were used to stratify the patients into eight different bins
for random sampling, as shown in Figure 2b. A similar
procedure was utilized during five-fold cross-validation
on the training set to optimize the framework’s hyperpa-
rameters (described further in Section 2.4). The training
and test sets obtained using the stratified random split-
ting approach were assessed, using statistical tests, for
possible inhomogeneities in terms of clinical feature dis-
tribution between the two sets. A Pearson’s chi-squared
homogeneity test was used for categorical variables.
The continuous variables were assessed using a t-test.
Table 1 presents the cohort’s clinical information in the
training and test sets, and the results of associated
statistical analysis.

2.3 | Response prediction framework
Figure 3 demonstrates the scheme of the proposed hier-
archical deep-learning framework for therapy response
prediction. The patient-wise sampler in the framework
addresses the imbalance issue of the training data at
patient and patch levels. The sampler applies a weighted
sampling strategy for under-sampling the majority class
in the training set based on the total number of patches
and the number of patients in each class:

w, = St
=
Spp X Spe
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TABLE 1

DP DEEP-LEARNING TO PREDICT CTx RESPONSE

Demographic and clinical characteristics of the patients. The distribution of each variable was compared between the training

and test sets using a Pearson’s chi-squared homogeneity test for categorical variables and a t-test for continuous variables; the p-values are

reported in the last column.

Count (%)

Patient demographics and Training (n = 144) Test (n = 63) p-value
clinicopathological characteristics pPCR (n = 36) non-pCR (n = 108) pCR (n =16) non-pCR (n = 47) p=0.91
Median age (Years) 47.5 51 49.5 51 p=0.61
Menopausal status

Pre/Peri-menopausal 15 (42%) 56 (52%) 9 (56%) 24 (51%) p=0.69
Post-menopausal 21 (58%) 52 (48%) 7 (44%) 23 (49%)

Tumor Size

Mean tumor size (mm; + SD) 39.8 +21.1 556.8 +29.5 37.1+ 239 49.6 + 30.7 p=0.22
Nodal status (N Stage)

No positive lymph nodes (NO) 14 (39%) 22 (21%) 7 (44%) 8 (17%) p=0.59
1-3 Positive lymph nodes (N1) 21 (58%) 75 (69%) 8 (50%) 33 (70%)

4-9 Positive lymph nodes (N2) 1(3%) 10 (9%) 1(6%) 5 (11%)

>10 Positive lymph nodes (N3) 0 (0%) 1(1%) 0 (0%) 1(2%)

Receptor status

ER positive 13 (36%) 79 (73%) 3 (19%) 34 (72%) p=0.81
PR positive 12 (33%) 68 (63%) 2 (13%) 30 (64%) p=027
HER?2 positive 24 (67%) 38 (35%) 10 (63%) 14 (30%) p=0.51
Histology

Invasive ductal carcinoma 36 (100%) 96 (89%) 16 (100%) 44 (94%) p=0.53
Invasive lobular carcinoma 0(0%) 12 (11%) 0 (0%) 3 (6%)

Nottingham grade

1 1(3%) 4 (4%) 0 (0%) 1(2%) p=0.47
2 9 (25%) 39 (36%) 2 (13%) 22 (47%)

3 26 (72%) 65 (60%) 14 (87%) 24 (51%)

Other clinical information

Inflammatory breast cancer 2 (6%) 11 (10%) 2 (13%) 5 (11%) p=0.64

where, w, is the calculated weight for each patient, Sy; is
the total number of patches in the training set, Sy, is the
total number of patches for the patient, and Sy is the
total number of patches in the associated class of the
patient (pCR or non-pCR). After calculating the weights
for all patients in the training set, they are normalized
such that the sum of all weights adds up to one. All
patches of each patient are assigned equal weights for
selection by the sampler. The sampler size (humber of
patches in each epoch) is tuned as a hyperparameter
during the system’s training process.

The framework includes a hierarchical flow of patch-
level processing, tumor-level processing, and patient-
level response prediction. It utilizes a self-attention-
guided convolutional network architecture and two
customized ViT network architectures for hierarchical
deep-learning-based analysis of the digital pathology
images for NAC response prediction. In the patch-level
processing module, a modified CoAtNet model with two
convolutional components and two self-attention mod-
ules (Figure 3b) extracts the descriptive features from

the pathology image patches. The input patches are
downsampled to 256 x 256 pixels using a two-layer con-
volutional block. A feature map of size 768 associated
with each patch is collected from the last layer (global
pooling layer) before the fully connected layer in the net-
work. The sequence of feature maps for each tumor
bed is generated by stacking the sorted patch-level fea-
ture maps of the corresponding tumor bed annotation in
the associated digital pathology image. Specifically, the
feature maps are sorted based on the position of their
associated patch in the tumor bed from top left to bot-
tom right. The generated feature map sequence is fed as
input to the first ViT model that includes sixteen encoder
blocks (Figure 3c) to explore the relations in aggre-
gated features of each tumor bed. The initial positional
encoding vector for the tumor-level processing module
is defined based on the generated sequence of the
sorted patches. To adapt the sequence of feature maps
for the VIT architecture, the input size is defined as the
(sequence length x size of feature map vector). Since
the number of patches varies for different tumor beds, a
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Schematic representation of the proposed hierarchical deep-learning framework for NAC outcome prediction. The framework

(a) consists of a patch-level sampler for training and three levels of processing. Detailed architectures of the processing modules are shown for
the patch-level processing module (b), tumor-level processing module (c), and patient-level response prediction module (d). The component

colors in (b), (c) and (d) show the associated block in (a).

threshold is set for the maximum length of the sequence
(tuned as a hyperparameter during the system’s training
process). For the tumor beds with a smaller number of
patches than the threshold, a zero-masking approach
is applied, while for the beds with a larger number of
patches, the starting patch of the sequence is randomly
selected. A similar method is used in the patient-level
response prediction network (Figure 3d) to aggregate
the information obtained at the tumor-level processing
while exploiting the global dependencies between the
tumor areas for therapy response prediction. A feature
map of size 1024 associated with each tumor bed is
extracted from the last layer (mean pooling layer) of the
tumor-level processing ViT before the fully connected
layer. A sequence of the feature maps is generated for

each patient to feed into the patient-level response pre-
diction VIiT network that includes two encoder blocks.
Similar feature map sorting and sequence length thresh-
olding strategies applied for the tumor-level processing
ViT are used to create the input sequence of this ViT
network.

24 | System training

The framework’s hyperparameters were optimized
using a grid search approach with five-fold cross-
validation on the training set. The sampler size was
tuned to 10000 patches for each training epoch. The
number of patches per tumor bed and tumor bed regions
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per patient varied between 1 to 3879 (median = 6)
and 1 to 285 (median = 44), respectively. Accordingly,
the threshold for the maximum length of the sequence
in the tumor-level and patient-level processing modules
was tuned to 10 and 50, respectively. These thresholds
resulted in an input size of 10 x 768 and 50 x 1024
for the associated networks, respectively. The batch
size was tuned to 200 for all three networks. A maxi-
mum number of 100 epochs was used for training each
network. The learning rate was tuned to 0.05 for the
patch-level and tumor-level processing networks and
0.01 for the patient-level response prediction network.
After the hyperparameter tuning, 20% of the training set
patients (n = 29) were selected as the validation set
using the stratified random splitting approach, and the
framework with optimized hyperparameters was trained
using the remaining patients in the training set (80% of
the training set,n = 115).Early stopping was utilized for
all networks based on the validation loss during training
to prevent overfitting.

2.5 | Evaluation

The performance of the proposed framework was
assessed on the independent unseen test set using
the accuracy, sensitivity, specificity, loss, F1-score, and
area under the receiver operating characteristics (ROC)
curve (AUC). A threshold value of 0.5 was used as
the cut-off to calculate the sensitivity and specificity.
To evaluate the performance and effectiveness of the
proposed hierarchical framework, ablation experiments
were performed with models that only incorporated
the patch-level processing, patch-level + tumor-level,
and patch-level + patient-level processing modules.
In another set of experiments, maximum voting was
applied on the output of the patch-level and patch-
level + tumor-level models to obtain the tumor-level and
patient-level response prediction results for compari-
son with those of the hierarchical models. Specifically,
the maximum voting was applied over the responses
(pPCR/non-pCR) predicted by the patch-level or patch-
level + tumor-level model for all the patches/tumor
regions associated with a tumor region/patient. Sep-
arate experiments were conducted using two other
frameworks with different network architectures for
patch-level processing. The first framework utilized an
Xception model coupled with CBAM attention as a
state-of-the-art CNN-based model, while the second
framework applied a pure self-attended architecture
with a ViT model for processing the patches.

A gradient class activation map (Grad-CAM)
approach*® was applied to visualize the trained patch-
level processing attention mechanisms. The Grad-CAM
approach provides information on salient regions in
an image for a specific class to permit interpreting the
network decisions based on the model attention. The

attention heatmaps were generated for the patches
presented to the trained framework based on their
predicted label. The generated heatmaps were stitched
together using their position information to create
complete attention maps for individual tumor areas.
The visualization heatmaps were reviewed to assess
and compare the efficacy of attention mechanisms in
different networks.

3 | RESULTS

Table 2 shows the performance of the proposed frame-
work compared to other similar models. The results
demonstrate that the CoAtNet architecture as the patch-
level processing module outperformed the Xception
model with CBAM attention and the ViT model, with
an accuracy of 81% on the test set, compared to 79%
and 78%, respectively. Results of the ablation exper-
iments demonstrate that the three-level hierarchical
frameworks could outperform the patch-level only and
the two-level (patch-level + tumor-level and patch-level
+ patient-level) processing frameworks. The patch-level
+ tumor-level and patch-level + patient-level processing
frameworks consisting of cascaded ViT models resulted
in an AUC of 0.78 and 0.77, respectively, on the test
set. In contrast, a similar architecture with a three-level
hierarchy resulted in an AUC of 0.80. Also, the two-
level hierarchical models (patch-level + tumor-level and
patch-level + patient-level) with the Xception + CBAM
architecture followed by the ViT module could achieve
an AUC of 0.80 and 0.82, respectively. In contrast, a sim-
ilar model with three levels of processing could achieve
an AUC of 0.86. The tumor-level and patient-level results
obtained through maximum voting on the outputs of
the patch-level and patch-level + tumor-level models
demonstrate a better performance of the correspond-
ing hierarchical models in response prediction. The best
performance was achieved by the proposed framework
with a three-level hierarchy consisting of the CoAtNet
architecture as a patch-level processing module and
two ViT architectures for the tumor-level processing and
patient-level response prediction. This model resulted
in an accuracy of 86% on the test set and a sensitiv-
ity, specificity, F1-score and AUC of 87%, 83%, 90% and
0.89, respectively.

Figure 4 compares the AUC of the two-level
and three-level hierarchical architectures with different
patch-level processing modules (ViT, Xception+CBAM,
and CoAtNet). The AUCs range between 0.77 and 0.89,
with the best results associated with the three-level hier-
archical framework using the CoAtNet as the patch-level
processing component.

Figure 5 presents the attention heatmaps obtained
for two representative tumor regions: one with a pCR
and the other with a non-pCR outcome after NAC.
The heatmaps were generated for each patch in the
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TABLE 2 Performance of different architectures in predicting NAC response using pre-treatment digitized pathology slides of core needle
biopsies. The best value in each column is in bold. Acc: accuracy, Sens: sensitivity, Spec: specificity, AUC: area under the ROC curve.

Training set Validation set Independent test set

F1-
Model Loss Acc Sens Spec Loss Acc Sens Spec Loss Acc Sens Spec AUC score

ViT Patch-level 0.61 0.76 0.76 0.75 0.61 0.77 0.78 0.74 059 0.78 0.79 0.75 0.78 0.84

+ (None/ViT) .y voting on - 073 073 073 - 074 075 072 - 074 075 073 - 082
+ (None/ViT) Patch-level

(Tumor-level Results)
Max-voting on - 0.72 0.73 0.72 - 0.72 0.73 071 - 0.73 0.74 0.72 - 0.81

Patch-level
(Patient-level Results)

Patch-level 0.60 0.77 0.78 0.75 060 0.78 0.79 075 059 079 080 0.75 0.78 0.85
+ Tumor-level

Max-voting on - 0.76 0.77 075 - 0.76 0.77 074 - 0.78 0.79 0.75 - 0.84
Patch-level +
Tumor-level
(Patient-level Results)

Patch-level 059 0.79 0.79 0.78 060 0.78 0.79 0.76 057 080 081 0.78 0.77 0.86
+ Patient-level

Patch-level 0.57 0.80 0.80 0.79 058 0.79 080 0.76 055 0.82 083 0.79 0.80 0.87
+ Tumor-level
+ Patient-level

Xception Patch-level 0.57 077 0.80 0.74 058 0.77 079 0.73 056 0.79 0.80 0.76 0.79 0.85

(+CBAM) —  pax.voting on - 076 078 075 - 077 078 074 - 078 079 076 -  0.84
+ (None/ViT) Patch-level

+ (None/ViT) (Tumor-level Results)
Max-voting on - 0.76 0.77 0.76 - 0.76 0.77 0.74 - 0.76 0.77 0.75 - 0.83

Patch-level
(Patient-level Results)

Patch-level 0.55 0.80 0.81 0.77 056 080 081 075 055 081 082 0.77 080 0.86
+ Tumor-level

Max-voting on - 0.78 0.79 0.77 - 0.79 0.80 0.75 - 0.79 0.80 0.76 - 0.85
Patch-level +
Tumor-level
(Patient-level Results)

Patch-level 054 082 083 0.79 053 082 084 0.79 053 083 084 081 082 0.88
+ Patient-level

Patch-level 052 084 084 0.84 051 0.84 085 0.82 050 085 086 0.83 0.86 0.90
+ Tumor-level
+ Patient-level

CoAtNet Patch-level 0.56 0.78 0.80 0.76 0.58 0.78 0.80 0.74 054 081 0.82 0.78 0.79 0.86

+ (None/ViT)  p.y voting on - 076 077 076 - 077 078 074 - 078 080 077 - 085
+ (None/ViT) Patch-level

(Tumor-level Results)
Max-voting on - 0.76 0.77 0.75 - 0.76 0.77 074 - 0.77 0.79 0.76 - 0.84

Patch-level
(Patient-level Results)

Patch-level 0.54 080 083 0.78 055 080 0.81 0.76 053 082 083 0.78 0.81 0.87
+ Tumor-level

Max-voting on - 0.78 0.80 0.75 - 0.79 0.80 0.76 - 0.80 0.81 0.78 - 0.86
Patch-level +
Tumor-level
(Patient-level Results)

Patch-level 052 0.83 085 080 056 0.81 083 0.78 051 085 086 080 0.84 0.89
+ Patient-level

Patch-level 048 0.85 0.86 0.84 052 0.84 085 081 048 0.86 0.87 0.83 0.89 0.90
+ Tumor-level
+ Patient-level
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FIGURE 4 Receiver operating characteristic (ROC) curves on

the independent test set for the predictive models developed with
two-level (patch-level + patient-level: ViT + ViT, Xception + ViT, and
CoAtNet + ViT) and three-level (patch-level + tumor-level +
patient-level: ViT + ViT + ViT, Xception + ViT + ViT, and CoAtNet +
ViT + ViT) hierarchical framework. Different patch-level processing
modules were utilized for comparison.

tumor bed region (contoured by an expert pathologist)
using the Grad-CAM approach and overlaid on the orig-
inal pathology image for visualization. Comparing the
heatmaps associated with different patch-level process-
ing modules shows that the CoAtNet architecture has
focused more on the tumor regions than the other two
networks.

4 | DISCUSSION

In this study, a hierarchical deep learning framework was
developed to predict breast cancer response to NAC
using digital histopathological images of pre-treatment
biopsy specimens. The proposed model consists of a
patch-level processing module followed by a tumor-level
processing module and a patient-level response predic-
tion module. A self-attention-guided convolutional net-
work based on the CoAtNet architecture was adapted
for the patch-level processing step, with two ViT mod-
els for aggregating the sequence of feature maps at
the tumor level and predicting the therapy response,
respectively. The patch-level processing module was
applied to capture the local correlations within the tumor
microenvironment and extract the feature maps carry-
ing relevant information of the pathology image patches.
The tumor-level processing step was used to aggre-
gate the local information for each tumor region. The
patient-level prediction module utilized the sequence of
information for various tumor regions to derive the global

relations and predict the patient response to NAC. The
proposed model could predict NAC response of patients
in an independent test set with a sensitivity, speci-
ficity, and F1-score of 87%, 83%, and 90%, respectively.
Comparing the attention heatmaps generated by vari-
ous patch-level processing architectures demonstrates
that the CoAtNet architecture paid more attention to
the tumor areas than the surrounding healthy tis-
sues. The proposed hierarchical model’s performance
shows that the combination of convolutional blocks
with self-attention modules in the patch-level process-
ing component can effectively extract local information
within the tumor patches. Further, the relations between
these features in each tumor area and at the patient
level for NAC response prediction can be successfully
modeled using the vision transformer modules.

The proposed hierarchical framework provides an
effective approach for analyzing the WSIs at high res-
olution. Results of the ablation experiments in this study
demonstrate that the three-level hierarchical model
could outperform the patch-level only and the two-level
hierarchical models in predicting the NAC response. The
performance of a purely convolutional architecture, a
completely self-attention-based model, and a combina-
tion of convolutional and self-attention components in
extracting informative features from the tumor patches
were compared. The results demonstrate that coupling
the convolutional and self-attention modules leads to a
more effective architecture for extracting local features.
The positional embedding approach proposed in this
study enables the framework to extract global relations
between tumor areas and predict the pCR/non-pCR
outcome for each patient using multi-head attention
modules.

The obtained results in this study show that the
local features extracted at the patch and tumor levels
carry meaningful information for NAC response pre-
diction. However, the relations within the aggregated
patch-level information and the global dependencies
between the tumor areas should also be considered
for a more accurate response prediction at the tumor
and patient levels. This is supported by the results of
the comparative evaluations performed with maximum
voting for predicting NAC response at the tumor and
patient levels. Specifically, while the models with max-
imum voting receive the information from all patches
or tumor regions in a WSI, they have demonstrated
inferior performance compared to their hierarchical-
model counterparts. Further, aggregating the patch- or
tumor-level information using the maximum voting strat-
egy has resulted in slightly lower response prediction
accuracy compared to the individual patch/tumor-level
results. These observations highlight the importance of
a systematized strategy to fuse the patch/tumor-level
information on the tumor/patient level for NAC response
prediction. The size and number of the tumor beds vary
among the biopsy samples, leading to large variations
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FIGURE 5 Comparison of Grad-CAM attention heatmaps associated with different patch-level processing modules for two representative
tumor regions with a pCR (top row) and non-pCR (bottom row) outcome after NAC, respectively: (a, b) tumor areas extracted from the

H&E-stained WSis, (c, d) attention heatmaps of ViT, (e, f) attention heatmaps of Xception + CBAM, (g, h) attention heatmaps of CoAtNet. The
contours show the tumor bed annotations drawn by an expert pathologist. The CoAtNet architecture focuses more on the tumor area than the

other networks.

in the number of patches per tumor bed and WSI. Such
variations can potentially lead to inferior aggregated
results on the tumor level and patient level based
on maximum voting compared to the corresponding
patch-level and patch-level + tumor-level models.
Information on cellular interactions and activities
within the tumor microenvironment can potentially
be captured from imaging. Enhancing diagnostic and
response-guided therapy approaches may be possible
by identifying biomarker signatures obtained through
mapping tumor subcomponents and assessing biologi-
cal heterogeneity in digital pathology images.*’ Previous
studies have investigated the use of radiomic features
from different medical imaging data collected at early
stages of diagnosis for predicting the NAC response in
BC.'94849 The results obtained in those investigations
demonstrate that intra-tumor heterogeneity quantified
on imaging at pre-treatment can be associated with
response to NAC. However, these images may not be
acquired routinely for BC diagnosis. Integrating this

information into a therapy response prediction frame-
work may necessitate additional imaging data collection
and processing that would not always be possible.

A recent study has demonstrated the potential of
hand-crafted pathomic features coupled with con-
ventional ML models in predicting BC response to
NACZ® The ML models were developed using the
training data acquired from 111 patients, where the
best model achieved an accuracy of 84% (sensitivity:
85%; specificity: 82%) on the test set (38 patients). The
observations of that research agree with the results
obtained in this study. However, extracting hand-crafted
features could be affected by feature extraction proto-
cols that influence their reproducibility. Also, while the
hand-crafted feature-based conventional ML models
have a decent potential in analyzing imaging data, they
are bounded by the information provided by a set of
features defined by closed-form mathematical equa-
tions. The data-driven deep-learning models such as
the one implemented in this study have shown higher
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performance in analyzing large-scale data and better
scalability with growing datasets. A very recent study
has applied deep learning methods to predict BC
response to NAC using three parallel pathology images
as the input®® The digital pathology images were
obtained from the histopathology slides with H&E
staining, and Ki67 and phosphohistone H3 (PHH3)
immunohistochemistry. The models were developed
using a training set of 43 patients and evaluated on
a test set with 30 patients. Using maximum voting on
the patch-level results, their best model achieved a
test accuracy of 93% on the patient level for detecting
pCR to NAC. Those results, albeit obtained on a rela-
tively small dataset, support the utility of deep learning
models in conjunction with digital pathology images of
tumor biopsies for NAC response prediction. However,
the models developed in that study require multimodal
pathology images with immunohistochemistry that are
not routinely performed on pre-treatment tumor biopsies
in the clinic.

The data in this study was acquired from a single insti-
tution retrospectively. Future multi-institutional studies
with external validation are required for a more rigor-
ous evaluation of the developed framework for NAC
response prediction. The current framework requires
manual annotation of the tumor regions by patholo-
gists, which is tedious and time-consuming in the clinical
setting. Automating the tumor annotation process can
streamline the pathology workflow considerably. Future
works can address this issue by developing auto-
mated tumor annotation methods and investigating their
efficacy when integrated with the NAC response pre-
diction framework. The framework proposed in this
study directly analyses the pathology image patches
with no explicit pre-processing step for nucleus detec-
tion and tumor cell classification. Future studies may
investigate the potential impact of incorporating such
pre-processing steps in the framework to extract tumor
microenvironment features of the cancer cells. Nev-
ertheless, the methods proposed in this study can
potentially be adapted for analyzing digital pathology
WSis in other applications. This includes diagnostic and
prognostic applications for various cancer types such as
breast! prostate,®? liver® and lung carcinomas.>*

5 | CONCLUSIONS

This study presented an automated hierarchical frame-
work for analyzing digital pathology images of biopsy
specimens and predicting NAC response at pre-
treatment with promising results. The effectiveness
of combining convolutional blocks with self-attention
modules for hierarchical analysis of high-resolution
histopathological images was demonstrated. The results
of this study pave the way toward a response-guided
therapy paradigm for individual breast cancer patients

and motivate future studies on larger multi-institutional
datasets for further investigation of the proposed
methodologies.
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