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A B S T R A C T   

Purpose: An enhanced ultrasound elastography technique is proposed for early assessment of locally advanced 
breast cancer (LABC) response to neoadjuvant chemotherapy (NAC). 
Methods: The proposed elastography technique inputs ultrasound radiofrequency data obtained through tissue 
quasi-static stimulation and adapts a strain refinement algorithm formulated based on fundamental principles of 
continuum mechanics, coupled with an iterative inverse finite element method to reconstruct the breast Young’s 
modulus (E) images. The technique was explored for therapy response assessment using data acquired from 25 
LABC patients before and at weeks 1, 2, and 4 after the NAC initiation (100 scans). The E ratio of tumor to the 
surrounding tissue was calculated at different scans and compared to the baseline for each patient. Patients’ 
response to NAC was determined many months later using standard clinical and histopathological criteria. 
Results: Reconstructed E ratio changes obtained as early as one week after the NAC onset demonstrate very good 
separation between the two cohorts of responders and non-responders to NAC. Statistically significant differences 
were observed in the E ratio changes between the two patient cohorts at weeks 1 to 4 after treatment (p-value <
0.001; statistical power greater than 97%). A significant difference in axial strain ratio changes was observed 
only at week 4 (p-value = 0.01; statistical power = 76%). No significant difference was observed in tumor size 
changes at weeks 1, 2 or 4. 
Conclusion: The proposed elastography technique demonstrates a high potential for chemotherapy response 
monitoring in LABC patients and superior performance compared to strain imaging.   

1. Introduction 

Breast cancer is the second most diagnosed cancer in women, esti-
mated to affect 1 in 8 women during their lifetime [1]. About 10–20% of 
new breast cancer cases are present with locally advanced breast cancer 
(LABC) [2]. LABC tumors are usually larger than 5 cm and may include 

varying extent of skin, nipple and/or chest wall involvement and 
lymphadenopathy [3]. The current standard treatment for LABC in-
cludes neoadjuvant chemotherapy (NAC) to shrink the tumor and make 
it operable before removing it surgically using procedures such as 
lumpectomy or mastectomy [4]. Several studies have reported a sig-
nificant correlation between patient response to NAC and improved 
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treatment outcomes including survival metrics [5–8]. However, com-
plete response is limited to <30% of patients, while about 30–40% of 
patients do not even partially respond to standard chemotherapy 
[9–14]. Predicting patient’s response early after NAC initiation may 
enable physicians to offer treatment adjustments (e.g., modifying 
regimen, dose and/or sequence of treatment options) or even switch to 
salvage therapy for non-responding patients, before it is too late [15]. 
Such patient-specific treatment modifications can spare breast cancer 
patients from unnecessary side effects and improve their overall treat-
ment outcomes and quality of life. 

Current approaches for evaluation of response to NAC aim at 
detecting changes in tumor size in response to treatment [16,17]. They 
include physical examination or standard anatomical imaging such as 
mammography, conventional ultrasound imaging, computed tomogra-
phy (CT) and magnetic resonance imaging (MRI). Tumor size changes, 
however, may take several months to become detectable, and sometimes 
may not be evident on imaging despite a favorable histopathological 
response to therapy [18–20]. As such, these imaging modalities, if being 
offered to monitor response to NAC, can be effective only a few months 
after treatment initiation. 

In search for more effective monitoring techniques, a number of 
studies have investigated different functional imaging modalities for 
evaluating cancer response to treatment [20,21]. Such modalities eval-
uate physiological, metabolic, and/or molecular changes in the tumor, 
potentially enabling assessment of therapy response before a change in 
tumor size is detectable on standard imaging modalities. In this context, 
dynamic contrast enhanced (DCE) MRI and contrast-enhanced 
mammography (CEM) have been investigated to detect early changes 
in tumor physiology as associated with angiogenesis and microcircula-
tion in response to chemotherapy [22–28]. While they showed promise 
for evaluation of breast cancer response to NAC, both modalities require 
injection of exogenous contrast agents for each assessment during the 
course of treatment and DCE-MRI is relatively expensive. Furthermore, 
tumor response might be associated with fibrosis which often leads to 
enhancement on contrast imaging modalities, hence not being distin-
guishable from residual tumor. A number of studies have demonstrated 
the potential of nuclear medicine imaging including positron emission 
tomography (PET) for evaluating tumor response to chemotherapy by 
detecting early changes in tumor metabolism [29,30]. It has been 
demonstrated that early mean reduction of 2-deoxy-2-[F-18] fluoro-D- 
glucose (FDG) uptake measured using FDG-PET/CT is significantly 
higher in responding tumors compared to non-responding lesions 
[29,30]. PET has also shown potential for early response assessment in 
breast cancer patients through tumor cell proliferation assessment via 
quantifying 3′-[F-18] fluoro-3′-deoxythymidine (FLT) uptake [31]. 
These imaging modalities are, however, not always accessible, often 
limited in resolution while they need injection of radionuclide contrast 
agents, limiting the frequency of scanning patients for response evalu-
ation during the course of treatment. Quantitative ultrasound (QUS) is 
another functional imaging modality that can examine response-related 
tumor micro-structure characteristics [32–39]. QUS parameters have 
shown high sensitivity in characterizing tumor cell death in response to 
cancer therapy in preclinical studies [40,41]. Clinical studies on LABC 
patients undergoing NAC also demonstrated that early changes in QUS 
parameters after treatment initiation can differentiate patients in terms 
of clinical and pathological response and long-term survival [17,42]. 
Diffuse optical spectroscopic imaging (DOSI) is another possible alter-
native to other breast imaging modalities. This modality has shown good 
potential in clinical applications pertinent to breast cancer assessment 
and diagnosis [43–45]. This method has also been used for monitoring 
NAC response in patients with breast cancer by probing changes in 
tumor composition, perfusion, and oxygenation [46–51]. However, the 
diagnostic performance of DOSI was found to be inferior to that of early 
metabolic response as monitored by FDG PET/CT in [48]. While DOSI 
does not require any exogenous contrast agents for imaging, it is asso-
ciated with long scan time for reconstructing images with acceptable 

resolution, hence it has not been adapted in the clinic as a standard 
modality. 

Several studies have demonstrated considerable correlation between 
tumor formation and alteration in tissue biomechanical properties 
[52–54]. Generally, the dynamic nature of the tissue extracellular ma-
trix (ECM) plays a crucial role in cancer progression [55]. It has been 
demonstrated that increasing ECM stiffness as a result of excessive 
collagen generation during tumor formation can directly activates bio-
logical processes that result in tumor invasion and metastasis [56]. 
Moreover, increased collagen content in ECM can promote tumor pro-
gression and invasiveness [57–61]. Given that chemotherapy leads to 
apoptosis and other forms of cell death in tumor, it is anticipated that 
ECM composition is impacted significantly during effective therapy 
[62,63]. A manifestation of such alterations is potentially tissue stiffness 
reduction. In other words, there is a potential correlation between 
chemotherapy response and tumor softening. In a study conducted by 
Falou et al., a commercial ultrasound machine was used for clinical 
strain imaging of breast tumors in 15 LABC patients before and after the 
start of NAC [64]. Their results demonstrated that changes in relative 
tumor stiffness can differentiate patients in terms of clinical and path-
ologic response to treatment as early as 4 weeks after the start of 
chemotherapy. However, ultrasound strain elastography lacks accuracy 
in quantifying tissue stiffens as it relies on a poor tissue stress uniformity 
assumption [65,66]. Recently developed techniques for ultrasound 
elastography that are capable of quantifying tissue biomechanical 
properties with precise measures such as Young’s modulus can poten-
tially be adapted to monitor the biomechanical alterations in tumor in 
response to treatment [67,68]. Such methods are anticipated to be 
capable of more reliable and earlier differentiation between responding 
and non-responding patients after therapy initiation, compared to strain 
imaging. Ultrasound elastography is less expensive, potentially more 
accessible, and is associated with shorter scan times compared to PET, 
MRI and DOSI. Also, it does not need injection of exogenous contrast 
agents for imaging. 

The present study proposes an enhanced full-inversion-based ultra-
sound elastography technique to quantify changes in the Young’s 
modulus of LABC tumors as a measure of the response to NAC. This 
technique applies ultrasound radiofrequency (RF) data acquired via a 
quasi-static stimulation of breast tissue induced by ultrasound probe. It 
generates enhanced axial and lateral strain images by enforcing funda-
mental principles of continuum mechanics [69]. The enhanced strain 
images are then input to an iterative inverse finite element (FE) algo-
rithm to reconstruct the relative Young’s modulus image of the breast 
tissue [67]. The method was applied to ultrasound RF data acquired 
from 25 LABC patients undergoing full course of NAC before the treat-
ment (baseline) and at weeks 1, 2, and 4 after the therapy initiation, and 
its efficacy in chemotherapy response monitoring was investigated. 

2. Materials and methods 

2.1. Study protocol and data acquisition 

This study was conducted in accordance with the institutional 
research ethics board approval from Sunnybrook Health Sciences 
Centre, Toronto, Canada. Patients were included in the study based on 
the following inclusion criteria: age (18–85 years), confirmed diagnosis 
of LABC, and treatment with NAC followed by surgery. The exclusion 
criteria for the study involved subjects with inflammatory breast cancer, 
past medical history of breast abnormalities, significant injury or sur-
gical procedures involving breast, dermatological abnormalities, current 
or past medical history of connective tissue disease, pregnancy, or 
lactation. In keeping with the criteria above, twenty-five eligible pa-
tients were included in the study after obtaining written informed 
consent. A core needle biopsy was performed for each patient to confirm 
cancer diagnosis. Information pertaining to tumor grade, histology, and 
receptor status was also acquired from respective biopsy specimens. Pre- 
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and post-treatment MRI were acquired for each patient before the start 
of NAC and prior to surgery to determine the initial and residual tumor 
size. 

Using a Sonix RP System (Ultrasonix, Vancouver, Canada), ultra-
sound B-mode images and radiofrequency (RF) data were acquired from 
the patients’ affected breast before treatment as well as at week 1, week 
2, and week 4 after the NAC initiation. A 6-cm-wide L14-5/60 trans-
ducer operating at a nominal frequency of 10 MHz and a frame rate of 12 
frame/s was used in this study. All the ultrasound data were acquired by 
a trained sonographer following standardized protocols for data acqui-
sition. The patients maintained a supine body position while their arms 
were placed above their heads throughout the scan. The transducer 
focus for each patient was determined based on tumor center depth 
before treatment and it was kept consistent through the rest of the study. 
On average, 4 scan planes pertaining to different sections of the tumor 
were acquired for each patient in ~1-cm increments under the guidance 
of a physician. Raw RF data were acquired at each scan plane before and 
after a quasi-static stimulation of the breast by the probe while the 
tumor region contrast was being monitored in the real-time clinical 
strain image shown by the ultrasound system. The RF data were saved 
digitally with 16-bit resolution for use in the enhanced elastography 
method described later. 

The patients underwent surgery four to six weeks after completing 
the course of NAC. The surgical specimens were stained with hema-
toxylin and eosin (H&E) for histopathology. The histopathology samples 
were assessed by a board-certified pathologist who was kept blinded to 
the study results. Patients were categorized into two cohorts of re-
sponders and non-responders using the modified response (MR) grading 
system described in [70,71] that is based on response evaluation criteria 
in solid tumors (RECIST) [16] and histopathological criteria [19,38]. 
Patients with a MR score of 1–2 (less than 30% reduction in tumor size) 
and 3–5 (more than 30% reduction in tumor size or with very low re-
sidual tumor cellularity) were determined as non-responders and re-
sponders, respectively. In keeping with this, 17 and 8 patients in this 
study were identified as responders and non-responders, respectively. 
Table 1 summarizes the clinical characteristics of the patients partici-
pated in this study. 

2.2. Enhanced strain imaging 

Axial and lateral displacement fields for each scan plane were esti-
mated using two frames of ultrasound RF data acquired at two states of 
tissue pre- and post-mechanical stimulation with the ultrasound probe. 
In the first step, an initial estimation of the axial and lateral displace-
ment fields was obtained using the method proposed in [72] followed by 
the Global Ultrasound Elastography (GLUE) method [73]. The resulting 
fields were then input to the STrain REfinement ALgorithm (STREAL) 
[69,74,75]. This algorithm improves the accuracy of the displacement 
fields and strain images by imposing continuum mechanics principles of 
tissue incompressibility and compatibility through the following steps:  

1. Applying Laplacian filtering to smooth the initial displacement fields 
estimated by GLUE method.  

2. Estimating the ratio of out-of-plane strain to axial strain at each point 
within the tissue computational field of view. This estimate is 
derived from modeling the breast as semi-infinite medium following 
the Boussinesq model [75]. 

3. Enforcing the tissue incompressibility equation in 3D using the es-
timates obtained in step 2 to refine the axial and lateral displacement 
fields.  

4. Applying the finite difference spatial derivative on the refined 
displacement fields to generate enhanced images of the tissue axial 
and lateral strain.  

5. Enforcing the strain compatibility equation to further enhance the 
axial and lateral strain images. 

2.3. Full Inversion-Based Young’s modulus reconstruction 

A full-inversion-based quasi-static elastography technique was 
adapted to reconstruct relative Young’s modulus image of the breast 
tissue, using the enhanced strain images obtained through the methods 
presented in the previous section as input [67]. The technique applies 
iterative algorithm of FE analysis for computing tissue stress distribution 
resulting from the quasi-static mechanical stimulation followed by 
Young’s modulus (E) calculation using 2D Hooke’s law (Equation (1)). 

1
E
=

εyy

σyy − νσxx
(1) 

In this equation, ν is the tissue Poisson’s ratio which is set to 0.495 
according to breast tissue incompressibility [76,77], and ε and σ 
represent the strain and stress where the subscripts yy and xx correspond 
to the axial and lateral directions, respectively. The iterative process of E 
reconstruction is stopped when E values of the finite elements stop 
changing appreciably. 

For the stress calculation part of the reconstruction technique, FE 
analysis was used through ABAQUS FE solver (ABAQUS/Standard, 
Dassault Systèmes Simulia Corp., Providence, RI, USA). For this analysis, 
the rectangular field of view of the ultrasound scan plane was meshed 
using linear quadrilateral elements. In the FE analysis, unlike other 
techniques that assume ideal unconstrained boundary conditions along 
the outline of the field of view, we used experimentally measured pre-
scribed displacement boundary conditions along the outline. These 
displacement boundary conditions were obtained from a subset of the 
refined displacement data obtained as described earlier, while the high- 

Table 1 
Participating patients’ characteristics.  

Characteristics Mean ± SD/ 
percentage 

Age 51 ± 12 years  

Tumor Size (Maximum Diameter) 
Initial Tumor Size 5.42 ± 2.25 cm 
Residual Tumor Size 2.25 ± 2.87 cm  

Tumor Grade 
I 4% 
II 36% 
III 60%  

Histology 
Invasive Ductal Carcinoma 88% 
Invasive Lobular Carcinoma 4% 
Invasive Metaplastic Carcinoma 8%  

Molecular Features 
ER+ 48% 
PR+ 32% 
HER2+ 28% 
Triple Negative 40% 
ER/PR+ & HER2+ 16% 
ER/PR+ & HER2- 32% 
ER&PR- & HER2+ 12%  

NAC Regimen 
Doxorubicin, Cyclophosphamide, and Paclitaxel (AC-T) 52% 
5-Fluorouracil, Epirubicin, cyclophosphamide, and 

docetaxel (FEC-D) 
36% 

Docetaxel and Cyclophosphamide (TC) 8% 
Adriamycin, Cyclophosphamide, and Docetaxel (AC-D) 4%  

Response 
Responders 68% 
Non-Responders 32%  
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quality strain data was used in Equation (1) for updating E in each 
iteration. Two different methods were used for updating E in each 
iteration:  

1. In the first method, similar to [67], we used Equation (1) throughout 
the iterations. The relative Young’s modulus images obtained from 
this approach are labelled “axial-strain-based E image”.  

2. To take advantage of the enhanced lateral strain, we also used 
Hooke’s law in conjunction with the lateral displacements as given in 
Equation (2). In this method, we used both Eqs. (1) and (2) with 
weight factors of 10 and 1, respectively, to update E. The relative 
Youngs’ modulus images obtained following this method are labelled 
“axial/lateral-strain-based E image”. The weight factors were 
selected based on previous reports that estimate the signal-to-noise 
ratio of ultrasound axial strain images to be typically 10 times 
higher compared to lateral strain images [78]. 

1
E
=

εxx

σxx − νσyy
(2)  

2.4. Data analysis 

Using the B-mode images, the region of each tumor was outlined in 
each scan plane with a physician’s guidance. A representative 

surrounding area of normal tissue was then selected in each scan for 
calculating the strain or E ratio of the tumor to surrounding normal 
tissue. At each patient’s assessment time, the strain or E ratio was first 
calculated for each scan plane and then averaged across all scan planes 
of the tumor to obtain the average ratio for the entire tumor volume. For 
obtaining the average E value within the tumor area in each scan plane, 
a Gaussian distribution was fitted to the E values within the tumor re-
gion, and the values associated with the lower 30% of the distribution 
were removed. This pre-processing step was performed to discard small 
E values pertaining to tumor heterogeneity and to obtain a better esti-
mate of the stiff areas within the tumor region. For calculating the 
average E value of the surrounding normal tissue in each scan plane, any 
E value smaller than 50% or larger than 150% of the average E value of 
the normal tissue region was also discarded following the same argu-
ment and the findings of [79] on the mechanical properties of ex vivo 
breast tissue samples. The final E ratio of tumor to normal tissue in each 
scan plane was then calculated by taking the ratio of the average of the 
remaining values in each region. A similar method was used to calculate 
average strain ratios. 

Relative changes in the strain and E ratios from the baseline (pre- 
treatment scan) were calculated for each patient at weeks 1, 2, and 4 
after the initiation of NAC. Statistical analysis was conducted using 
mixed analysis of variance (ANOVA) to assess significance of the dif-
ference in strain or E ratio change after NAC between responding and 

Fig. 1. B-mode (A), axial strain (B), lateral strain (C) and Young’s modulus images obtained based on the axial strain (D) and based on axial and lateral strains (E) 
obtained for a representative responder before and at different times after the NAC initiation. The axial and lateral strain images were generated using the 
STREAL technique. 
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non-responding patients. Normality violations in each group of the 
combination of the two factors (response, scan time) were checked using 
the Shapiro-Wilk test. A t-test (two-sided, 95% confidence) was per-
formed to assess if the two cohorts of patients show any significant 
difference in the strain or E ratio changes at each scan time (weeks 1, 2, 
and 4) compared to the baseline. Receiver operating characteristics 
(ROC) analyses were performed to assess the ability of these parameters 
at different scan times to differentiate between the response of the two 
cohorts in terms of the area under the curve (AUC). Similar analyses 
were performed on tumor size changes from the baseline measured at 
each scan time using the ultrasound images acquired for each patient. 

3. Results 

Fig. 1 and Fig. 2  show representative B-mode, strain and E images 
acquired before and at weeks 1, 2 and 4 after the NAC initiation for a 
responding and a non-responding patient, respectively. For the 
responding patient, a continuous reduction in tumor stiffness compared 
to the baseline is detectable starting from week 1. The reduction is more 
evident at weeks 2 and 4 after the NAC initiation. For the non- 
responding patient, minimal changes are observed in tumor stiffness 
in response to NAC, even at weeks 2 and 4 after the NAC onset. While 
possible changes in tumor stiffness after NAC can be detected on the 
strain images, such changes are more evident on the E images. 

Generally, the axial-strain-based and axial/lateral-strain-based E images 
have similar quality. However, for some cases the latter show better 
contrast in identifying tumor and healthy regions. Fig. 3 demonstrate 
hematoxylin and eosin (H&E) stained histopathology images of the 
surgical specimens acquired for representative patients. A large residual 
tumor is observed in the mastectomy specimen of the non-responding 
patient. The histopathology image of the responding patient demon-
strates the tumor bed area with chemotherapy effect and no residual 
carcinoma. Both images indicate notable heterogeneity within the 
tumor region. 

Estimated from the axial-strain-based E images, the responding (non- 
responding) patients demonstrated an average tumor-to-normal-tissue E 
ratio of 3.1 ± 0.7 (3.5 ± 0.8), 2.6 ± 0.8 (3.7 ± 0.6), 2.3 ± 0.7 (3.3 ±
0.9), and 1.7 ± 0.4 (3.2 ± 1.0) at pre-treatment and weeks 1, 2, and 4 
after the treatment initiation, respectively. Using the axial/lateral- 
strain-based E images, an average E ratio of 2.8 ± 0.7 (2.8 ± 0.8), 2.3 
± 0.7 (2.8 ± 0.9), 2.0 ± 0.6 (2.5 ± 1.0), and 1.7 ± 0.4 (2.8 ± 0.9) was 
estimated for these patients at pre-treatment and weeks 1, 2, and 4 after 
the start of treatment, respectively. While the average tumor stiffness at 
the baseline is comparable between the two cohorts, the difference in 
the average E ratios between the responder and non-responder cohorts 
shows increases at weeks 1 to 4 after the therapy initiation. 

Fig. 4 demonstrates average changes in the strain and E ratios 
compared to the baseline at different times after NAC initiation for the 

Fig. 2. B-mode (A), axial strain (B), lateral strain (C) and Young’s modulus images obtained based on the axial strain (D) and based on axial and lateral strains (E) 
obtained for a representative non-responder before and at different times after the start of NAC. The axial and lateral strain images were generated using the 
STREAL technique. 
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two patient cohorts. According to these plots, the axial strain ratio de-
creases over time after week 1 for the responder cohort while it shows an 
increase for the non-responder cohort at week 1 with little average 
changes afterwards. However, the lateral strain ratio demonstrates 
minimal changes throughout the chemotherapy for the responder cohort 
while showing elevations for the non-responder cohort. In the plots 
associated with both versions of the E image, the responder cohort 
demonstrates a consistent reduction in the average E ratio, starting with 
15–20% decrease on average at week 1, followed by 25–30% decrease at 
week 2 and 40–45% decrease at week 4 following the treatment onset. In 
contrast, the non-responder cohort shows minimal change in the 
average E ratio after the start of the chemotherapy with <10% change 
on average even at week 4 following the treatment initiation. In sum-
mary, the change in E ratio for both versions of the E images can 
completely differentiate responders from non-responders as early as one 
week after the start of treatment, whereas a clear differentiation cannot 
be done based on changes in strain ratio until 4 weeks after the NAC 
initiation. Fig. 5 shows average changes in tumor size from the baseline 

Fig. 3. Histopathology images of surgical specimens obtained from representative responding and non-responding patients.  

Fig. 4. Relative changes in tumor stiffness compared to baseline after the start of NAC for responding and non-responding patient cohorts, estimated based on axial 
strain ratio (A), lateral strain ratio (B), E ratio obtained from the axial-strain-based Young’s modulus image (C), E ratio obtained from the axial/lateral-strain-based 
Young’s modulus image (D). 

Fig. 5. Relative changes in tumor size compared to baseline after the NAC 
initiation for responding and non-responding patient cohorts. 
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at weeks 1, 2 and 4 after the treatment onset. No substantial changes are 
visible in tumor size to separate the patient cohorts, with ~10% and 
~5% average decrease for the responding and non-responding patients 
at week 4, respectively. 

Table 2 shows the results of statistical analysis among the responding 
and non-responding patients at different scan times. The results ob-
tained from the mixed ANOVA test demonstrate a statistically significant 
difference in changes in the E ratio between the responding and non- 
responding patients after the onset of NAC. Such difference is statisti-
cally extremely significant in the E ratio changes estimated using both 
approaches (p-value < 0.001). A similar test conducted for the changes 
in strain ratios and tumor size demonstrate no significant difference for 
the lateral strain and tumor size, but an approaching significant differ-
ence (p-value = 0.08) for the axial strain. The conducted t-test demon-
strates a statistically significant difference in the E ratio changes from 
the baseline as early as one week after the treatment onset that is 
maintained at weeks 2 and 4, with high statistical power. In contrast, no 
significant difference is observed for changes in the tumor size or lateral 
strain ratio at weeks 1 to 4. For the axial strain ratio, a significant dif-
ference is only seen at week 4 after the treatment initiation. Moreover, 
results of the ROC analysis demonstrate promising AUCs obtained for 
changes in the E ratios at weeks 1 to 4 after the start of chemotherapy, 
and for the axial strain at week 4. 

4. Discussion and conclusion 

This study investigated, for the first time, the application of a novel 
full inversion-based ultrasound elastography technique for monitoring 
tumor response to NAC in LABC patients. The technique adapted the 
STREAL method [69,74,75] for enhanced strain imaging coupled with a 
novel methodology for reconstruction of elasticity images that permits 
accurate quantification of breast tissue relative Young’s modulus. The 
method was applied on ultrasound data acquired from 25 LABC patients 
before and at weeks 1, 2 and 4 after the NAC initiation. Changes in tumor 
stiffness in response to NAC was quantified using average E and strain 
ratios of tumor to surrounding normal tissue obtained at 1, 2 and 4 
weeks after the start of NAC initiation. Response of patients to NAC was 
determined after completing the course of NAC and surgery using the 
standard clinical and histopathological criteria. The criteria were used 
for evaluating the performance of the elastography parameters in 
assessing patients’ response to NAC early after the therapy initiation. 
Trend of changes in tumor Young’s modulus among the responding and 
non-responding patients indicated a very good correlation with the NAC 
response. In particular, while the tumor E ratio demonstrated a 
considerable and continuous decrease for responding patients starting at 
week 1, minimal changes were observed for non-responding patients 

even at week 4 after the NAC onset. 
Estimated from the axial-strain-based and axial/lateral-strain-based 

E images, the responding versus non-responding patients demon-
strated average tumor-to-normal-tissue E ratios of 3.1 ± 0.7 versus 3.5 
± 0.8 and 2.8 ± 0.7 versus 2.8 ± 0.8, respective, before starting the 
NAC. The estimated average E ratios at the baseline are comparable 
between the two cohorts and within the range reported for breast cancer 
in the literature [80]. Statistical analysis confirmed that the method is 
successful in differentiating responding and non-responding patients as 
early as one week after the NAC initiation. Specifically, statistically 
significant differences were observed in E ratio changes between the 
responding and non-responding patients at all scans after the therapy 
onset (Table 2). The results of this statistical analysis are indicative of a 
substantial improvement compared to the previous study in which a 
significant difference (p-value = 0.002) in tumor stiffness changes was 
only observed after 4 weeks following the start of treatment when such 
changes were estimated using clinical ultrasound strain imaging [64]. 
The results obtained in this study with strain images supports the find-
ings of the previous study. Here, a significant difference (p-value = 0.01) 
in changes of the axial strain ratios was observed only at week 4 after the 
chemotherapy onset. The inferior performance of the strain compared to 
the E images in early differentiation of the patients’ response to NAC can 
be attributed to the poor stiffness measure of the strain compared to the 
tissue Young’s modulus [66]. Strain image is a true representative of the 
tissue stiffness only if the stress is uniformity distributed within the 
breast tissue while being stimulated mechanically with the ultrasound 
probe for strain-based elastography [65]. Due to the breast tissue in-
homogeneity and irregular geometry, and local loading, it is well 
established that considerable stress non-uniformity exists within the 
field of view, hindering the sensitivity of strain images in estimating 
tumor stiffness [67]. The full-inversion-based E reconstruction algo-
rithm applied in this study takes tissue stress non-uniformity into ac-
count via finite element analysis, leading to higher signal-to-noise ratio 
(SNR) in generated E images, hence higher sensitivity in quantifying 
small changes in tumor stiffness compared to strain images. The statis-
tical analysis on tumor size changes measured using the ultrasound 
images demonstrated no significant difference between the responding 
and non-responding patients at weeks 1 to 4 following the treatment 
initiation. This observation is in agreement with findings of the previous 
studies in which no statistically significant difference was evident in 
tumor size changes measured using MRI [81] or ultrasound [82] 3–4 
weeks after the start of chemotherapy. 

The enhanced axial and lateral strain images obtained using STREAL 
were utilized to generate two versions of E images. The first version of E 
images was reconstructed using the enhanced axial images only, while 
the second version also took advantage of the enhanced lateral strain 

Table 2 
Results of statistical analysis obtained for different elastography parameters acquired from the responding and non-responding patient cohorts at different times after 
the NAC initiation. *, †, and ‡ demonstrate statistically significant (p-value < 0.05), highly significant, (p-value < 0.01), and extremely significant (p-value < 0.001), 
respectively.  

Parameter Week Mixed ANOVA (p-value) T-Test (p-value) Statistical Power AUC 

%ΔTumor-Size 1 
0.90  

0.93 5.1%  0.47 
2  0.63 8.7%  0.61 
4  0.52 11.2%  0.60 

%ΔAxial-Strain-Ratio 1 
0.08  

0.49 10.5%  0.64 
2  0.17 33.6%  0.74 
4  0.01* 75.8%  0.85 

%ΔLateral-Strain-Ratio 1 
0.31  

0.16 23.2%  0.67 
2  0.82 5.5%  0.51 
4  0.21 15%  0.61 

%ΔE-Ratio 
(axial-strain-based E image) 

1 
<0.001‡

0.02* 82.8%  0.79 
2  <0.001‡ 97.6%  0.85 
4  <0.001‡ 99.9%  0.99 

%ΔE-Ratio 
(axial/lateral-strain-based E image) 

1 
<0.001‡

<0.001‡ 98.1%  0.82 
2  0.02* 78.4%  0.77 
4  <0.001‡ 99.9%  1.0  
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images for generating E images with higher quantitative accuracy. The 
quality of these images was generally comparable, but in some cases the 
E images reconstructed based on both the axial and lateral strain images 
led to better visualization of the tumor region compared to those 
generated based on the axial strain only. Similarly, the trends of changes 
in the tumor E ratio measured based on these elasticity images were 
similar over the course of treatment in each response cohort. However, 
the E ratios associated with the E images generated based on both the 
axial and lateral strain images provided a relatively better separation 
between the two cohorts at weeks 1 and 4 after the NAC initiation. In 
particular, a statistically extremely significant (p-value < 0.001; statis-
tical power = 98%) versus significant (p-value = 0.02; statistical power 
= 83%) difference was observed in the E ratio changes measured at week 
1 using the E images reconstructed based on the axial and lateral strain 
images, and axial strain images, respectively. The results of ROC analysis 
for both these methods demonstrated a relatively high AUC for NAC 
response prediction at week 1 after the treatment onset. These obser-
vations support the findings of a very recent study in which ultrasound 
shear wave elastography was applied to measure changes in tumor 
Young’s modulus in breast cancer patients undergoing NAC [82]. In that 
study, changes in tumor Young’s modulus were quantified at weeks 3 
and 6 after the NAC initiation, where statistically (highly) significant 
differences (p-value = 0.02 and 0.001) were observed between the pa-
tient cohorts with pathological complete versus non-complete response. 
The findings of this study encourage future studies to investigate the 
efficacy of the ultrasound shear wave elastography in differentiating the 
response cohorts at weeks 1 and 2 after the NAC initiation, based on the 
measured changes in tumor stiffness. 

To minimize the effect of mechanical stimulation variations in this 
study, the tumor stiffness measurements in each scan have been 
normalized using the surrounding tissue’s stiffness measured from the 
same scan. Furthermore, the study has monitored the relative changes in 
the stiffness of each tumor at week 1, 2 and 4 after the treatment initi-
ation compared to its baseline (pre-treatment). Therefore, the inter- 
patient differences between the breast volume and target volume are 
expected to have minimal effect on this longitudinal analysis. 

One limitation associated with this study is the relatively small size 
of the cohort investigated. The obtained results for the E ratio changes 
indicate a good level of statistical power for the performed tests. 
Nevertheless, future studies on larger cohorts are necessary to scrutinize 
the efficacy of the proposed methods in NAC response monitoring more 
rigorously. Such investigations can potentially compare the perfor-
mance of the proposed elastography technique in NAC response pre-
diction with other imaging methods, e.g., QUS, DOSI and MRI, in paired 
studies. Availability of larger datasets in future studies would also 
permit adaptation of data-driven models [83] for deep-learning of E 
images that can lead to improved prediction of therapy response. The 
responders and non-responder cohorts in this study included similar 
proportions of grade II and grade III tumors. However, the two cohorts 
involved fairly different proportions in terms of molecular subtypes of 
breast cancer. Future studies on larger cohorts can explore whether 
changes in the measures of tumor stiffness in combination with the 
molecular features of the disease can improve the differentiation be-
tween the responders and non-responders early after the NAC initiation. 
The majority of the patients in this study received a combination of 
anthracycline and taxane-based chemotherapy (AC-T: 52%; FEC-D: 
36%; AC-D: 4%). The AC-T and FEC-D regimens did not demonstrate 
any statistically significant difference in E ratio changes measured at 
week 1, 2, or 4 within the responder cohort (t-test, two-sided, 95% 
confidence). Similarly, the E ratio changes measured for the non- 
responders at weeks 1 to 4 did not demonstrate any significant differ-
ence between these regimens. While the results show no significant 
intra-group difference in the effect of these NAC regimens on the E ratio 
changes, future investigations on larger patient populations are required 
to stratify the participants based on the NAC regimen they received and 
evaluate the effect of this factor on the study outcome systematically. 

In conclusion, this study demonstrated a good potential for the 
proposed full inversion-based ultrasound elastography technique in 
assessing and predicating tumor response to NAC in LABC patients as 
early as one week after the NAC initiation. Early prediction of neo-
adjuvant therapy response for these patients can potentially facilitate 
treatment adjustments by clinicians on an individual patient basis. A 
personalized paradigm for breast cancer therapeutics is anticipated to 
improve the overall therapy outcome, survival, and quality of life for the 
patients. This study, therefore, is a step forward towards precision 
oncology and tailoring chemotherapies for breast cancer patients. 
Studies involving larger patient populations are, however, required to 
further evaluate the efficacy and robustness of the technique, and to 
compare its performance in NAC response monitoring with other im-
aging methods. 
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