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Simple Summary: At present, quantitative ultrasound (QUS) is increasingly utilized in cancer imag-
ing. Compared to other imaging modalities that take several days to weeks to assess treatment
effectiveness, QUS can provide a rapid treatment evaluation. Its implementation has been docu-
mented in characterizing benign versus malignant breast lesions, assessing lymph nodes, predicting
and monitoring tumor response, etc. Both preclinical and clinical studies have confirmed that changes
in QUS parameters are directly correlated with tissue microstructural alterations. QUS parameters
and textural analyses have widely been used to predict and monitor neoadjuvant chemotherapy
(NAC) response in locally advanced breast cancer (LABC) patients. Thus, QUS methods have
emerged as one of the most useful imaging techniques for the management of several tumor types.

Abstract: Quantitative ultrasound (QUS) is a non-invasive novel technique that allows treatment
response monitoring. Studies have shown that QUS backscatter variables strongly correlate with
changes observed microscopically. Increases in cell death result in significant alterations in ultrasound
backscatter parameters. In particular, the parameters related to scatterer size and scatterer concentra-
tion tend to increase in relation to cell death. The use of QUS in monitoring tumor response has been
discussed in several preclinical and clinical studies. Most of the preclinical studies have utilized QUS
for evaluating cell death response by differentiating between viable cells and dead cells. In addition,
clinical studies have incorporated QUS mostly for tissue characterization, including classifying benign
versus malignant breast lesions, as well as responder versus non-responder patients. In this review,
we highlight some of the important findings of previous preclinical and clinical studies and expand
the applicability and therapeutic benefits of QUS in clinical settings. We summarized some recent
clinical research advances in ultrasound-based radiomics analysis for monitoring and predicting
treatment response and characterizing benign and malignant breast lesions. We also discuss current
challenges, limitations, and future prospects of QUS-radiomics.

Keywords: cell death; locally advanced breast cancer (LABC); treatment response; quantitative
ultrasound (QUS); radiotherapy; chemotherapy

1. Introduction

Over the years, multiple technologies have paved the way in the treatment of cancers.
Diagnosing cancer is a multi-step, complex process. Diagnostic imaging procedures have
made earlier detection of cancer possible. Some of the commonly used imaging techniques
include computed tomography (CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), ultrasound, and X-ray [1,2]. Quantitative ultrasound (QUS) is one of
such kinds that has gained popularity by offering many advantages over other modalities.
It is a non-invasive device that is cost-effective, portable, and radiation-free [3]. No incisions
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or cuts are required during the imaging process, which makes it a safe and easily accessible
device. The use of QUS has widely been explored both as a diagnostic and therapeutic
imaging modality.

Several preclinical and clinical studies have implemented QUS for cancer prediction
and monitoring [4–9]. Different parameters can be extracted from linear regression analysis
using normalized power spectra of radio frequency (RF) data from ultrasound [10–15].
Linear-fit parameters include the mid-band fit (MBF), 0-MHz intercept (SI), and spectral
slope (SS). The first two parameters are associated with the amount of backscattering,
while the last one is associated with the scatter’s size [10–12]. In order to obtain spectral
parameters that reflect more about acoustic scatterers, such as their concentration and
size, theoretical acoustic scattering models can be fitted to the measured back-scattering
function of the sample. This results in average scatterer diameter (ASD)/effective scat-
terer diameter (ESD)/effective scatterer size (ESS) and average acoustic concentration
(AAC)/effective acoustic concentration (EAC)/effective scatterer concentration (ESC) pa-
rameters. These parameters (ASD and AAC) can be estimated using the spherical Gaussian
scattering model (SGM) and the fluid-filled-sphere model (FFSM) form factor models to
the ultrasonic backscatter coefficient (BSC) [13–15]. The ASD and AAC parameters cor-
relate with the changes in scatterer sizes and concentrations, respectively. QUS spectral
parametric imaging creates maps of quantitative parameters obtained through spectral
analysis of ultrasound RF data. These maps reveal tissue intrinsic scattering proper-
ties. Tissue microstructures and their scattering properties are distinct between invasive
and non-invasive tumors [16], and from responsive to treatment compared to those of
non-responsive ones [17]. The QUS spectral parametric images can provide a surrogate
delineation of tumor microstructures providing diagnostic [18,19] and prognostic poten-
tials [20–25]. QUS spectral parametric maps are created using a sliding window technique.
The window extracts a block of RF data for spectral analysis. The kernel is moved to all
points in the region of interest (ROI), given some kernel overlap factors. For clinical applica-
tions, typically a 2 mm × 2 mm kernel size is used. This size amounts to approximately ten
acoustic wavelengths. A Hanning gating function is applied in the axial direction to smooth
out the RF segments. The Fast Fourier Transform (FFT) method is utilized to extract the
spectral contents of each RF segment in the block. An average power spectrum associated
with the kernel is then obtained by averaging RF spectra in the kernel.

A reference phantom technique is utilized to obtain tissue-dependent scattering com-
ponents from the RF signal [26,27]. The spatially homogeneous reference phantom has
well-characterized frequency-dependent back-scattering and attenuation functions. The
phantom is scanned using the same ultrasound system and acquisition settings for extract-
ing reference RF data. Corresponding to the RF block from the sample, the reference RF
block is acquired from the same location in the reference phantom. The spectral normal-
ization procedure divides the sample spectrum by the reference spectrum. Along with
the corresponding attenuation functions and reference backscatter coefficient (BSC), this
allows for the estimation of the tissue-dependent scattering function. Parametrization of
the frequency-dependent scattering function results in the linear-fit and acoustic scattering
parameters useful for diagnostics and prognostics [18–25].

These analyses are repeated for each point in the ROI to come up with paramet-
ric images of QUS spectral parameters. From the parametric maps, radiomics features
can be extracted that include first-order statistical, morphological, and textural features.
These radiomic features are potential imaging biomarkers for diagnosis and prognosis pur-
poses [18–25]. Radiomics texture features rely on the hypothesis that tissue heterogeneity
can be quantified through their surrogate spectral parametric maps (Figure 1).
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Figure 1. A summary of QUS spectroscopy workflow. QUS spectroscopy extracts scattering compo-
nents from the RF signal that uniquely characterize tissue samples. The spectral normalization pro-
cedure removes instrument-dependent components from the RF signal, while the attenuation cor-
rection procedure compensates loss in the acoustic signal as it propagates through intervening tis-
sue layers. Parametrization of the attenuation-corrected NPS or the BSC allows for tumors charac-
terization, providing diagnostic and prognostic values. These parameters can then be utilized to 
develop a classification model for diagnostic and prognostic purposes. BSC: backscatter coefficient, 
NPS: normalized power spectrum, QUS: quantitative ultrasound. 

1.1. Ultrasound Imaging of Cell Death in Tumor Response 
Studies have confirmed a strong correlation between changes in cell nuclear structure 

and ultrasound parameters using both low- and high-frequency ultrasound. A study by 
Banihashemi et al. showed an increase in MBF and SS parameters in a time-dependent 
manner following photodynamic therapy (PDT) in an in vivo melanoma model. They re-
ported 45% apoptotic cell death at 24 h, that corresponded to maximum SS increase, show-
ing a value of 0.435 ± 0.07 dB/MHz. Similarly, an increase in MBF was observed between 
12 to 24 h. At 48 h, around 50% of the cells were seen to have their nuclei disappeared as 
a result of late stage of apoptosis. The loss of cell nuclei at 48 h resulted in the decrement 
of ultrasound backscatter parameters [28]. Thus, a direct correlation between cell death 
and ultrasound parameters was established in this study. A similar outcomes were re-
ported by Sadeghi-Naini et al. in a clinical study conducted with locally advanced breast 
cancer (LABC) patients receiving chemotherapy. They reported an increase in MBF and 
SI at week 4 of treatment. Responding patients demonstrated 9.1 ± 1.2 dBr increases in 
MBF as compared to the non-responder with the MBF value of 1.9 ± 1.1 dBr. Similarly, the 
SI variable increased in responding patients to 8.9 ± 1.9 dBr compared to 1.6 ± 0.9 dBr 
observed in non-responding patients. Additionally, histopathology data from the non-re-
sponder patient demonstrated a large compact mass in the mastectomy specimen; how-
ever, no such mass was observed in the specimen of responder patients. Thus, their result 
showed that patients responding to treatment showed significant changes in QUS param-
eters as compared to non-responders [5]. Moreover, parameters such as AAC and ASD 
have also been found to strongly correspond to cell death. A clinical study reported a 
substantial increase in AAC and ASD at weeks 1, 4, and 8 in LABC patients that responded 

Figure 1. A summary of QUS spectroscopy workflow. QUS spectroscopy extracts scattering com-
ponents from the RF signal that uniquely characterize tissue samples. The spectral normalization
procedure removes instrument-dependent components from the RF signal, while the attenuation
correction procedure compensates loss in the acoustic signal as it propagates through intervening
tissue layers. Parametrization of the attenuation-corrected NPS or the BSC allows for tumors char-
acterization, providing diagnostic and prognostic values. These parameters can then be utilized to
develop a classification model for diagnostic and prognostic purposes. BSC: backscatter coefficient,
NPS: normalized power spectrum, QUS: quantitative ultrasound.

1.1. Ultrasound Imaging of Cell Death in Tumor Response

Studies have confirmed a strong correlation between changes in cell nuclear structure
and ultrasound parameters using both low- and high-frequency ultrasound. A study by
Banihashemi et al. showed an increase in MBF and SS parameters in a time-dependent
manner following photodynamic therapy (PDT) in an in vivo melanoma model. They
reported 45% apoptotic cell death at 24 h, that corresponded to maximum SS increase,
showing a value of 0.435 ± 0.07 dB/MHz. Similarly, an increase in MBF was observed
between 12 to 24 h. At 48 h, around 50% of the cells were seen to have their nuclei
disappeared as a result of late stage of apoptosis. The loss of cell nuclei at 48 h resulted
in the decrement of ultrasound backscatter parameters [28]. Thus, a direct correlation
between cell death and ultrasound parameters was established in this study. A similar
outcomes were reported by Sadeghi-Naini et al. in a clinical study conducted with locally
advanced breast cancer (LABC) patients receiving chemotherapy. They reported an increase
in MBF and SI at week 4 of treatment. Responding patients demonstrated 9.1 ± 1.2 dBr
increases in MBF as compared to the non-responder with the MBF value of 1.9 ± 1.1 dBr.
Similarly, the SI variable increased in responding patients to 8.9 ± 1.9 dBr compared to
1.6 ± 0.9 dBr observed in non-responding patients. Additionally, histopathology data from
the non-responder patient demonstrated a large compact mass in the mastectomy specimen;
however, no such mass was observed in the specimen of responder patients. Thus, their
result showed that patients responding to treatment showed significant changes in QUS
parameters as compared to non-responders [5]. Moreover, parameters such as AAC and
ASD have also been found to strongly correspond to cell death. A clinical study reported a
substantial increase in AAC and ASD at weeks 1, 4, and 8 in LABC patients that responded
to chemotherapy. Maximum increase was observed at week 8. On the contrary, no such
increase was seen in non-responding patients [13]. Similar results were also reported with
breast cancer xenograft following an exposure to chemotherapy. Higher AAC corresponded
to the highest cell death, indicating 60% at 24 h. A strong correlation between AAC and
cell death was demonstrated with (R2 SGM = 0.40) [14]. Thus, many endeavors have been
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made that confirm the utility of QUS and its parameters for monitoring treatment response,
as well as for differentiating between clinically responding and non-responding patients.
In the following sections, we discuss in detail some of the important findings that used
QUS in clinical settings for cancer diagnosis, tissue characterization, treatment prediction
and monitoring. The summary of QUS application and its utilization in preclinical and
clinical studies is presented in Table 1.

Table 1. Summary of QUS application and utilization in preclinical and clinical studies.

QUS Frequency Implementation References

50 MHz Cell death characterization (in vitro) [29]

40 MHz Monitoring treatment response (in vitro, in situ and in vivo) [30]

7 MHz Tissue characterization (clinical) [31]

5.75 MHz Tissue characterization (clinical) [32]

30 MHz and 34 MHz Cell death characterization (in vitro) [33]

4–12 MHz Tissue characterization (in vivo) [34]

8 MHz Tissue characterization (in vivo) [35]

8.5 MHz and 20 MHz Tissue characterization (in vivo) [36]

7.5 MHz Tissue characterization (clinical) [37]

40 MHz Tissue characterization (in vivo) [38]

20 MHz Examining cell structural changes (in vitro) [39]

20 MHz Tissue characterization (in vivo) [40]

26 MHz Monitoring treatment response (in vivo) [28]

20 MHz Monitoring treatment response (in vitro) [41]

20 MHz Monitoring treatment response (in vivo) [42]

1–12 MHz Tissue characterization (phantoms) (clinical) [43]

25.6 MHz Lymph nodes characterization (clinical) [44]

25.6 MHz Lymph nodes characterization (clinical) [45]

25 MHz Monitoring treatment response (in vivo) [46]

10 MHz and 15 MHz Tissue characterization (phantoms) (clinical) [47]

7 MHz Monitoring treatment response (clinical) [5]

25.6 MHz Detecting lymph node metastases (clinical) [48]

∼7 MHz and 20 MHz Treatment response monitoring (in vivo) [4]

40 MHz Tissue characterization (in vivo) [49]

6 MHz Tissue characterization (clinical) [50]

25 MHz Monitoring treatment response (in vivo) [6]

6 MHz Monitoring treatment response (in situ) [51]

7 MHz Monitoring treatment response (clinical) [13]

~7 MHz Monitoring treatment response (in vitro, in vivo) [7]

7 MHz and 20 MHz Monitoring treatment response (in vivo) [14]

6 MHz Monitoring treatment response (in vivo) [52]

25 MHz Cell death characterization (in vitro) [53]

25 MHz Monitoring treatment response (in vivo) [8]

~6 MHz Tissue characterization (clinical) [54]

29 MHz Tissue characterization (clinical) [55]

6.5 MHz and 6.9 MHz Predicting treatment response (clinical) [21]

6.3 MHz and 7 MHz Monitoring treatment response (clinical) [56]

8 MHz Monitoring treatment response (clinical) [57]

7 MHz Predicting treatment response (clinical) [58]

6.5 MHz Predicting tumor recurrence (clinical) [59]

6.5 MHz Predicting treatment response (clinical) [19]

7 MHz Predicting tumor recurrence (clinical) [25]

7 MHz Predicting tumor recurrence (clinical) [60]
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1.2. Clinical Applications of Classification Models Developed from QUS Spectral Parametric
Images Using Machine Learning Approaches
Tumors Characterization

Apart from monitoring tumor response and treatment efficacy, the use of QUS in
classifying benign versus malignant tumors has also been widely studied [54,61,62]. The
first study by Sadeghi-Naini et al. utilized QUS spectral and textural analysis techniques
to characterize breast lesions from 78 patients. Intra-lesion heterogeneity within tissue
micro-structures was quantified using textural features and average-based mean-value
parameters from each parametric map [54]. Later on, Osapoetra et al. expanded this
study to a larger cohort by analyzing texture and texture-derivate within the peri-tumoral
breast tissue [61]. Both of the studies only utilized the Gray Level Co-Occurrence Matrix
(GLCM)-based texture method to characterize breast lesions. Furthermore, another study
by Osapoetra et al. incorporated different texture methods, including GLCM, the Gray
Level Run Length Matrix (GLRLM), and the Gray Level Size Zone Matrix (GLSZM). They
applied these methods to QUS spectral parametric images to characterize breast lesions
from the tumor core and tumor margin [62].

A study by Sadeghi-Naini et al. explored different texture features to discriminate
between benign versus malignant breast lesions. Based on the size, density, and distribution
of acoustic scatterers, the QUS texture parameters can be utilized to quantify intra-lesional
heterogeneity, providing characterization and estimation of tissue microstructure. In their
study, several texture features, including contrast (CON), correlation (COR), homogeneity
(HOM), and energy (ENE), were generated using parametric maps of MBF, SS, SI, SAS,
EAC, and ESD. These texture features were then used as biomarkers to classify breast
lesions. The result revealed significant differences in benign versus malignant lesions with
(p < 0.05) in most of the textural features, including MBF (CON), (COR), (HOM), SS (CON),
(COR), (HOM), and SI (CON), (COR), (HOM), SAS (ENE), ESD (CON), (COR), and EAC
(HOM), (ENE) [54].

QUS spectral parametric imaging and texture analyses have been applied for the
characterization of breast lesions [61,62]. In this task, Osapoetra et al. developed clas-
sification models using radiomics features extracted from the parametric images, along
with traditional machine learning classifiers, to distinguish malignant lesions from benign
breast lesions [61]. In that study, the authors hypothesized that texture-derivate features
exhibit significant discriminating power for developing a multi-feature classification model.
Their cohort consisted of 204 patients with breast lesions (99 benign and 105 malignant).
Figures 2 and 3 show representative B-mode, ASD, AAC, MBF, SS, and SI parametric maps
from the benign and malignant groups, respectively. Figure 4 depicts scatter and box plots
of representative discriminating features. Texture-derivate features were demonstrated as
ones with the most separation between the two groups. They reported the best classification
performance of 90% sensitivity, 92% specificity, 91% accuracy, and 0.93 area under the curve
(AUC) using features from the tumor core and margin [61].

In another study, different ways to quantify texture images were studied for the task
of characterizing breast lesions. Classification models were developed using the GLCM,
GLRLM, and GLSZM radiomics features of QUS spectral parametric images. They reported
a classification accuracy from 73–91%, depending on tumor and margin attributes and
classification algorithms, on a cohort of 193 patients with breast lesions (92 benign and 101
malignant cases) [62].
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Figure 2. Representative QUS spectral parametric images from benign and malignant group. (A) benign 
breast lesions (left columns) (B) malignant breast lesions (right columns). The color bars present the range 
for ASD of 160 μm, AAC of 70 dB/cm3, MBF of 44 dB, SS of 10 dB/MHz, and SI of 70 dB. Scale bar: 1 cm. 
ASD: average scatterer diameter, AAC: average acoustic concentration, MBF: mid-band fit, SS: spectral 
slope, SI: 0-MHz intercept. Reprinted with permission from: (Figure 1) [61]. 

 
Figure 3. Representative texture maps representing local quantification of image texture. (A) benign 
breast lesions (left columns) (B) malignant breast lesions (right columns). Scale bar: 1 cm. MBF: mid-
band fit. Reprinted with permission from: (Figure 2) [61]. 

Figure 2. Representative QUS spectral parametric images from benign and malignant group. (A)
benign breast lesions (left columns) (B) malignant breast lesions (right columns). The color bars
present the range for ASD of 160 µm, AAC of 70 dB/cm3, MBF of 44 dB, SS of 10 dB/MHz, and SI of
70 dB. Scale bar: 1 cm. ASD: average scatterer diameter, AAC: average acoustic concentration, MBF:
mid-band fit, SS: spectral slope, SI: 0-MHz intercept. Reprinted with permission from: (Figure 1) [61].
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Figure 3. Representative texture maps representing local quantification of image texture. (A) benign
breast lesions (left columns) (B) malignant breast lesions (right columns). Scale bar: 1 cm. MBF:
mid-band fit. Reprinted with permission from: (Figure 2) [61].
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Figure 4. Box and scatter plots of representative radiomics features that demonstrate statistically signifi-
cant differences. Statistical significant, are represented as (*p < 0.05), (**p < 0.01), and (***p < 0.001). B: 
benign breast lesions, M: malignant breast lesions, ASD: average scatterer diameter, AAC: average acous-
tic concentration, MBF: mid-band fit, SS: spectral slope, SI: 0-MHz intercept, CON: contrast, COR: corre-
lation, ENE: energy, HOM: homogeneity. Reprinted with permission from: (Figure 3) [61]. 

QUS spectroscopy have also been applied for the characterization of different types 
of cancer. Rohrbach et al. demonstrated an application of QUS in the non-invasive char-
acterization of prostate cancers using a novel transrectal high-frequency ultrasound sys-
tem (ExactVu micro-ultrasound Exact Imaging, Markham, ON, Canada). They developed 
a multi-variate model from ASD, AAC, envelope statistics, and prostate-specific antigen 
(PSA) features, achieving the best AUC of 0.81 using a linear discriminant classifier [55]. 
Furthermore, Goundan et al. reported a thyroid nodules (TNs) characterization study [63]. 

Figure 4. Box and scatter plots of representative radiomics features that demonstrate statistically
significant differences. Statistical significant, are represented as (* p < 0.05), (** p < 0.01), and
(*** p < 0.001). B: benign breast lesions, M: malignant breast lesions, ASD: average scatterer diameter,
AAC: average acoustic concentration, MBF: mid-band fit, SS: spectral slope, SI: 0-MHz intercept,
CON: contrast, COR: correlation, ENE: energy, HOM: homogeneity. Reprinted with permission from:
(Figure 3) [61].

QUS spectroscopy have also been applied for the characterization of different types of
cancer. Rohrbach et al. demonstrated an application of QUS in the non-invasive charac-
terization of prostate cancers using a novel transrectal high-frequency ultrasound system
(ExactVu micro-ultrasound Exact Imaging, Markham, ON, Canada). They developed a
multi-variate model from ASD, AAC, envelope statistics, and prostate-specific antigen
(PSA) features, achieving the best AUC of 0.81 using a linear discriminant classifier [55].
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Furthermore, Goundan et al. reported a thyroid nodules (TNs) characterization study [63].
The cohort consisted of 225 TNs (24 malignant and 201 benign) from 208 patients. They
developed a classification model using QUS spectral features that include ASD, AAC, MBF,
and SI parameters, along with an envelope statistics feature in the Nakagami shape pa-
rameter. Their model achieved the best classification performance of 0.857 ± 0.033 receiver
operating characteristics (ROC) AUC, which was comparable with the value achieved
using the American College of Radiology Thyroid Imaging, Reporting and Data System
(ACR TI-RADS) and American Thyroid Association (ATA) risk-stratification systems. Fur-
thermore, they also demonstrated a reduction in the number of unnecessary fine-needle
biopsies (FNBs) when the combination of QUS parameters were used separately or with
the ACR TI-RADS [63].

1.3. LABC QUS Treatment Response Prediction

QUS spectral parametric imaging and texture analyses have been applied for the
clinical application of response characterization to cancer treatments. The underlying
hypothesis is that QUS spectral parameters are sensitive enough to detect microscopical
changes in tumors. As the tumors respond to cancer therapeutics, these changes can be used
as imaging biomarkers for developing classification models. Such models are potentially
useful in clinical practice, as they can guide early interventions during the full course of
cancer treatment. For example, in the neoadjuvant chemotherapy (NAC) management of
LABC, early prediction of non-responder patients will allow clinicians to decide if other
therapeutic agents might fare better for the objective of reducing the tumor size prior to the
main surgical procedure to remove the LABC tumors.

LABC treatment response prediction models from QUS spectral parametric imaging
and texture methods have been reported in a number of recent studies [20–23,25]. These
studies investigated several aspects of the classification model for treatment response
prediction that utilize radiomics features from higher-order GLCM-based textural fea-
tures [21,24]; assessment of potential issues regarding the variability of the radiomics
features as a result of different ultrasound systems in the clinic [20]; and model evaluation
from multi-institutional data [18,21], utilization of a novel approach that extract radiomics
features from intra-tumoral regions obtained through an unsupervised segmentation tech-
nique [22], and development of a deep learning-based model [23].

First, Dasgupta et al. studied the classification performance of models developed
utilizing higher-order textural features (texture-derivative) [58]. The cohort consisted of
100 patients (83 responders and 17 non-responders) with LABC undergoing NAC. They
extracted a pool of radiomics features, including the first-order statistical mean-value,
GLCM-based texture, and the proposed GLCM-based texture-derivate features. The best
set of features was determined through a sequential feature selection approach to develop
classification models to identify non-responders from responders. They reported the
best classification performance of 87% sensitivity, 81% specificity, 82% accuracy, and 0.86
AUC [58].

Second, Sannachi et al. addressed the potential issue of variations in the measured
radiomics features as they were acquired across different ultrasound systems prevalent in
clinics, along with their impacts on model classification performance. A GE-LOGIQ E9
(General Electric Healthcare, Milwaukee, WI, USA) and Ultrasonix-RP ((ULX) Ultrasonix
Medical Corp., Richmond, BC, Canada) ultrasound system were utilized. They analyzed
radiomics features from a cohort of 24 patients with LABC [20]. A previously developed
classification model for treatment response monitoring was also applied to assess the
performance of the smaller cohort [54]. They concluded that observed variations in data
due to system-specific features were small, and the results of the prediction models were
comparable across both ultrasound systems utilized Table 2. They found tissue heterogene-
ity to be the dominant factor causing variations in the measured radiomics features [20]
(Figures 5 and 6).
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Table 2. Summary of classification performance in the classification of non-responder from responder
at weeks 1, 4, and 8 after the initiation of chemotherapy using data from two ultrasound systems.
The asterisk (*) represents a statistically significant difference (p < 0.05) carried between treatment
response predictions from two ultrasound systems. The classification model for treatment response
monitoring was based on a previously reported study. US: ultrasound, ULX: ULX L14- 5/60, GE:
GE-LOGIQ E9. Adapted with permission from [20].

Scan Time US System Sensitivity [%] Specificity [%] Accuracy [%] McNemar p *

Week 1
ULX 60.0 50.0 58.8

0.752
GE 60.0 50.0 58.8

Week 4
ULX 78.9 66.7 77.3

0.545
GE 64.3 66.7 69.1

Week 8
ULX 71.4 100.0 73.3

0.683
GE 71.4 100.0 73.3
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Figure 5. The root means square deviation of differences in QUS parameters: MBF and SS, MBF-
texture parameters: MBF-CON, MBF-COR, MBF-ENE, and MBF-HOM due to measurement un-
certainty, variations in ultrasound systems, and tissue heterogeneity. These results suggest that
the inherent tissue heterogeneity was the most dominant contributor to variations in the estimated
radiomics features of QUS spectral parametric images. Overall, measurement uncertainty and varia-
tions in clinical ultrasound systems contribute less than the tissue heterogeneity component. MBF:
mid-band fit, SS: spectral slope, CON: contrast, COR: correlation, ENE: energy, HOM: homogeneity.
Reprinted with permission from: (Figure 3) [20].

DiCenzo et al. studied the efficacy of the classification model for therapy response pre-
diction using LABC data from multiple institutions. Their cohort consisted of 82 patients
with LABC undergoing NAC (48 responders and 34 non-responders). The patients in-
cluded were from multiple institutions. They developed classification models using a
pool of pre-treatment radiomics features that include first-order statistical mean-value
and GLCM-based texture features. They reported the best performance metric of 87%
accuracy in predicting non-responders from responders [21]. Subsequently, Osapoetra et al.
also assessed the classification model for therapy response prediction, utilizing more pre-
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treatment radiomics features that include higher-order GLCM-based texture on a similar
multi-institutional dataset. The cohort consisted of 74 patients (42 responders and 32 non-
responders) with LABC. Higher-order texture features have shown their discriminating
power for breast lesions characterization datasets. They reported the best classification
performance of 88% sensitivity, 78% specificity, 84% accuracy, and 0.86 AUC [18].
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In the typical framework for building a classification model for treatment response
prediction using radiomics texture features, the average value or average texture features
were estimated from the whole QUS spectral parametric image. Taleghamar et al. pro-
posed a different approach to utilizing spatial information from intra-tumoral parametric
maps. Their approach first segmented a discrete number of regions of the tumor from
the parametric maps, prior to obtaining average features. They utilized an unsupervised
learning approach for segmentation using a hidden Markov random field (HMRF) expecta-
tion maximization (EM) algorithm. Their approach allows for the utilization of radiomics
features only from a certain region of the intra-tumoral parametric maps. Their cohort
consisted of 181 patients (138 responders and 43 non-responders) with LABC undergoing
NAC. The radiomics features included first-order statistical mean-value and signal to noise
ratio (SNR) from each QUS spectral parametric image at pre-treatment. They reported a
classification model using the Adaptive Boosting (AdaBoost) technique, attaining 85.4%
accuracy and 0.89 AUC on an independent test set [22].

Deep learning models learn how to represent data with multiple levels of abstraction
using multiple processing layers [64]. They learn the features directly from data, in contrast
to traditional machine learning involving feature engineering. These methods have set
the state-of-the-art performance for tasks in computer vision, natural language processing,
and many other domains [39]. This trend motivated a recent effort by Taleghamar et al. in
utilizing the deep learning framework to boost the performance of the classification model
for treatment response prediction [23]. In contrast to previous studies on deep learning
for breast lesions characterization that use B-mode images, the inputs to the network
are QUS spectral parametric images [22]. In that study, Taleghamar et al. implemented
convolutional neural network (CNN) models for treatment response prediction [23]. Their
approach utilized a modified residual network version 101 (ResNet) [65] and a modified
residual attention network version 56 (RAN) [66] as the convolutional base. A densely
connected classifier was attached on top of the base layer. The networks were trained from
scratch using augmented QUS spectral parametric images from their cohort. The cohort
consisted of 181 LABC patients (138 responders and 43 non-responders) undergoing NAC.
They reported the best performance of 88% accuracy and 0.86 AUC on an independent test
set [23].

1.4. Head and Neck QUS Treatment Response Prediction

Another application of QUS radiomics was for building classification models to pre-
dict treatment response in 59 patients (22 early responders (ER), 29 late-responders (LR),
and 8 progressive diseases (PD)) with head and neck squamous cell carcinoma (HNSCC)
undergoing radical radiotherapy (RT) with or without concurrent chemotherapy. The
classification tasks identified non-responder (NR) from responders (R). Furthermore, they
also separated NR into LR and those with PD [19]. Table 3 tabulates the classification
metrics in the classification of ER from partial or NR. Table 4 summarizes the classification
performance in the classification of LR versus persistent or PD. Figure 7 depicts a represen-
tative decision boundary, along with points from the two groups in a three-dimensional
space of the selected best three features [19].

Tran et al. [57] reported classification models for predicting treatment response to radi-
cal RT in patients with head and neck malignancies. Their cohort consisted of 36 patients,
with 14 complete responders (CR) and 22 partial responders (PR). Classification models
were built using the best combination of attributes from a pool of radiomics features. The
radiomics features consisted of first-order statistical mean-value and GLCM-based texture
features of QUS spectral parametric images obtained at 24 h, 1 week, and 4 weeks post-
treatment. They reported the best classification accuracies of 80, 86, and 85% at 24 h, week
1, and week 4, respectively [57].



Cancers 2022, 14, 6217 12 of 17

Table 3. Response at 3 months: Complete responder (early responder) (n = 22) vs. partial/non-
responder (n = 37). Representative performance of classification models for identifying complete
responders from partial or non-responder. The analysis indicated the SVM-RBF model performed the
best in this particular task. FLD: Fischer’s linear discriminant analysis, KNN: k-nearest neighbour,
SVM-RBF: support vector machine-radial based function, MBF: mid-band fit, SI: 0-MHz intercept,
SS: spectral slope, ASD: average scatterer diameter, AAC: average acoustic concentration, COR: corre-
lation, CON: contrast, HOM: homogeneity, ENE: energy. Adapted with permission from [19].

Classifier Sensitivity Specificity Accuracy AUC Selected Features

FLD 73 81 78 0.75 MBF-HOM-CON, MBF, SI-CON-ENE

KNN 73 84 80 0.80 SS-COR-COR, MBF-ENE-HOM

SVM-RBF 86 95 92 0.91 MBF-HOM-CON, MBF-ENE-CON,
ASD-HOM-ENE

Table 4. Final Response. Late responder (n = 29) vs. persistent/progressive disease (n = 8). FLD: Fis-
cher’s linear discriminant analysis, KNN: k-nearest neighbour, SVM-RBF: support vector machine-
radial based function, MBF: mid-band fit, SI: 0-MHz intercept, SS: spectral slope, ASD: average
scatterer diameter, AAC: average acoustic concentration, CON: contrast, COR: correlation, ENE: en-
ergy, HOM: homogeneity. Adapted with permission from [19].

Classifier Sensitivity Specificity Accuracy AUC Selected Features

FLD 86 100 89 0.92 AAC-ENE-HOM, AAC-HOM-CON

KNN 93 88 92 0.90 AAC-HOM, ASD-ENE-HOM

SVM-RBF 97 88 95 0.97 SS, SS-HOM-CON
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2. Recurrence Prediction
2.1. Recurrence Prediction of Head and Neck Cancer Using Radiomics of QUS Spectral
Parametric Imaging

Radiomics of QUS spectral parametric imaging have been applied for a clinical applica-
tion in the identification of recurrence in 51 patients (17 recurrences vs. 34 non-recurrence)
with head-neck squamous cell carcinoma (HNSCC) treated with RT with or without concur-
rent chemotherapy [24,59]. Dasgupta et al. implemented traditional machine learning in
building a classification model for recurrence prediction. A set of pre-treatment radiomics
features that included first-order statistics mean-value and GLCM-based textures were
extracted from the parametric images. They reported the highest classification performance
of 76% sensitivity, 71% specificity, 75% accuracy, and 0.74 AUC with the KNN (k-nearest
neighbors) classifier [24].

Fatima et al. presented a radiomics study that develop a classification model for
predicting recurrence in a cohort of 51 patients (17 recurrences vs. 34 non-recurrence)
with HNSCC. In that study, radiomics imaging features from QUS spectral parametric
images included mean-value first-order statistics and GLCM-based textures. Radiomics
features from pre-treatment were subtracted from those collected at week 1 and week 4
after starting RT. They developed classification models using delta-features and reported
classification performance of 80% and 82% accuracy in predicting recurrence using changes
in the radiomics features at week 1 and week 4 of therapy, respectively [59].

2.2. Recurrence Prediction of Locally-Advanced Breast Cancer Using Radiomics of QUS Spectral
Parametric Imaging

Dasgupta et al. reported a classification model to predict recurrence using radiomics
features of QUS spectral parametric images obtained at pre-treatment [25]. Their cohort
consisted of 83 patients (28 recurrences versus 55 non-recurrence) with LABC undergoing
NAC. The pool of radiomics features consisted of first-order statistical mean-value, GLCM-
based texture, and GLCM-based higher-order textures. They reported the best classification
performance of 71% sensitivity, 87% specificity, 82% accuracy, and 0.76 AUC using an
support vector machine (SVM) classifier. Using the same data, they also evaluated different
targets in predicting recurrence. They reported a five-year recurrence-free survival of 83%
and 54% (p = 0.003) and a five-year overall survival of 85% and 74% (p = 0.083) using the
SVM model [25].

Bhardwaj et al. developed a classification model for predicting disease relapses in
a cohort of 83 patients with LABC (28 recurrences and 55 non-recurrence) treated with
NAC [60]. The pool of radiomics features included first-order statistical mean-value, GLCM-
based textures, and GLCM-based higher-order textures from QUS spectral parametric
images. They reported the best model from baseline and changes in week 4 features,
achieving 87% sensitivity, 75% specificity, 81% accuracy, and 0.83 AUC [60].

3. Conclusions

In summary, QUS and its spectroscopic variables can be used to monitor treatment
response, as well as to characterize responders versus non-responders and benign versus
malignant tumor lesions and so on. Along with this, QUS is one of the fastest standard
methods to predict treatment outcome. While most of the traditional methods incorporate
tumor size measurement as a gold standard for response monitoring, that takes up to several
days to weeks or even months. In contrast, imaging techniques such as QUS can provide
details of tissue morphological alterations within a few hours. Thus, understanding the
tumor heterogeneity and treatment response using QUS in advance might allow treatment
switch if necessary at the earliest possible time.

Application of radiomics to QUS spectral parametric imaging has found a plethora
of utilization in tumors characterization, treatment response characterization, monitoring,
and prediction of disease relapses. Despite these promising avenues, caution needs to be
exercised in regards to its implementation. These studies rely on the concept of learning
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from labeled data and the evaluation of generalized performance on new unseen data.
Ongoing efforts are being made to refine the model building and evaluation strategies
in order to eliminate potential pitfalls related to leakage of information from training to
validation or test sets.

Radiomics features of QUS spectral parametric images are potential attributes for de-
veloping robust classification models for computer-aided diagnosis (CAD) systems with im-
mense potential for its future incorporation clinically to evaluate cancer treatment responses.

Limitations and Future Directions

There are potential limitations associated with the usage of QUS. Since ultrasound is a
handheld device, its reproducibility remains a question as compared to other techniques,
such as mammography or MRI, that are automatic with high accuracy. Another important
point is that most of the studies conducted using QUS are retrospectively performed at
a single center, which suggests that the model might not be fully stable and there might
also be a lack of robustness regarding the system. Although normalization and attenuation
correction procedures compensate for instrument-specific components in the RF signal,
there is a need to perform standardized measurements across institutions, clinical trials,
and ultrasound system vendors. Such studies will corroborate the reproducibility and con-
formity of QUS backscatter measurements across possible sources of variations. Anderson
et al. reported an interlaboratory study that independently measured ultrasound BSC from
several well-characterized phantom materials [43]. In that study, the phantom materials
were constructed with known scatterers’ distribution, allowing a direct comparison of the
estimated BSCs with those obtained from acoustic scattering theory. The phantoms were
grouped into low-attenuating and tissue-like attenuating materials. Ultrasonic backscatter-
ing characterizations of these phantoms were performed over frequency analysis ranging
from 1 to 12 MHz. Each institution utilized several ultrasonic transducers with differ-
ent characteristics, including nominal center frequencies, analysis bandwidths, aperture
numbers, and focal lengths. The authors observed an excellent agreement between the
BSC estimates from both laboratories. Their study demonstrates the ability to accurately
estimate parameters derived from the BSC, including linear fit parameters, along with the
scattering parameters. Thus, more inter-institutional studies should be conducted, which
not only will provide large sample sizes, but also provide a variety of datasets that can
improve the accuracy of the models.
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