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ABSTRACT A noticeable proportion of larger brain metastases (BMs) are not locally controlled after
stereotactic radiotherapy, and it may take months before local progression is apparent on standard follow-
up imaging. This work proposes and investigates new explainable deep-learning models to predict the
radiotherapy outcome for BM. A novel self-attention-guided 3D residual network is introduced for predicting
the outcome of local failure (LF) after radiotherapy using the baseline treatment-planning MRI. The 3D self-
attention modules facilitate capturing long-range intra/inter slice dependencies which are often overlooked
by convolution layers. The proposed model was compared to a vanilla 3D residual network and 3D residual
network with CBAM attention in terms of performance in outcome prediction. A training recipe was adapted
for the outcome prediction models during pretraining and training the down-stream task based on the recently
proposed big transfer principles. A novel 3D visualizationmodule was coupled with the model to demonstrate
the impact of various intra/peri-lesion regions on volumetric multi-channel MRI upon the network’s predic-
tion. The proposed self-attention-guided 3D residual network outperforms the vanilla residual network and
the residual network with CBAM attention in accuracy, F1-score, and AUC. The visualization results show
the importance of peri-lesional characteristics on treatment-planning MRI in predicting local outcome after
radiotherapy. This study demonstrates the potential of self-attention-guided deep-learning features derived
from volumetric MRI in radiotherapy outcome prediction for BM. The insights obtained via the developed
visualization module for individual lesions can possibly be applied during radiotherapy planning to decrease
the chance of LF.

INDEX TERMS Attention mechanism, brain metastasis, deep learning, stereotactic radiotherapy, therapy
outcome prediction.

Clinical and Translational Impact Statement— Early prediction of local failure coupled with visualization
of the model’s decision basis allows for treatment adjustment on an individual patient basis and facilitates
precision oncology for BM patients.
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I. INTRODUCTION
About 20% of patients with extracranial malignancies
develop brain metastases (BM) [1]. It is estimated that
between 70,000 to 400,000 new cases of BM are diagnosed
each year in the United States [2]. Because of increasing
access to neuroimaging and developments in systemic thera-
pies for patients with metastatic disease, as well as increased
physician and patient awareness of BMs, the incidence of BM
is expected to increase among cancer patients [1].

The survival of patients with BM depends on timely diag-
nosis and effective therapy. The major therapeutic options for
metastatic brain tumours include surgery, radiation therapy,
and/or chemotherapy. Surgical resection is recommended for
patient with large solitary tumours in an accessible loca-
tion [3]. The three principal modalities of radiation therapy
(RT) for BM are whole-brain radiation therapy (WBRT),
single-fraction stereotactic radiosurgery (SRS), and hypo-
fractionated stereotactic radiotherapy (SRT). While WBRT
has been the main treatment for patients with multiple BM
[4], there has been a move away from WBRT to SRT and
SRS due to adverse side-effects associated with WBRT such
as fatigue and cognitive deterioration [5], [6].

Because of various tumour and/or patient-related charac-
teristics such as tumour size, location, and histology as well
as the patient’s genetics, age and performance status, local
response of BM tumours to radiation varies among patients.
This is true even when standardized dose/fraction regimens
are administrated [7]. The local response to RT is classified
as either local control (LC; stable or shrinking tumour that is
indicative of a stable disease, partial response, or complete
response,) or local failure (LF; enlarging tumour associated
with a progressive disease) based on tumour size changes on
follow-up structural serial imaging [8]. However, it could take
months for a local response to be visible on follow-up scans.
Given that the median survival of BM patients following RT
can be between 5months and 4 years [9], [10], early detection
of LF after RT potentially permit effective adjustments in
treatment that lead to enhanced therapy outcomes, patients’
survival, and their quality of life.

Following the successful application of artificial intel-
ligence (AI) methods in diagnostic imaging [11], [12],
AI-based cancer imaging analysis is now being used to
meet other and more complex clinical challenges [13], [14].
These methodologies have the capacity to uncover previously
unknown features from routinely acquired medical images.
Quantitative and semi-quantitative features, which are often
beyond human perception, can be derived from obtained
neuroimaging data. These features can potentially be applied
to develop machine learning models to address crucial clin-
ical challenges such as therapy outcome assessment or
treatment response prediction. Radiomics is a relatively
new transformational research domain that adapts high-
throughput approaches for mining of large-scale medical
imaging datasets to identify quantitative features (biomark-
ers) for different diagnostic and prognostic applications [15].

Multiple studies have shown links between radiomic signa-
tures of tumours and their phenotypic, genomic, and pro-
teomic profiles [16]. Several studies have also demonstrated
the efficacy of radiomic-based machine learning models
in therapy outcome prediction [17], [18], including local
response of BM to radiotherapy [19], [20], [21].

Compared to hand-crafted radiomic features, the appli-
cation of deep learning in medical imaging could possibly
addressmore complicated challenges, particularly when large
relevant datasets are available. Deep learning models have
shown great promise in recognizing important and distinc-
tive aspects of medical image data in various applications
including cancer therapeutics [22], [23], [24]. Deep mod-
els, and especially convolutional neural networks (CNNs),
can detect complex textural patterns in tissue, distinguish
between malignant and benign cells, and possibly derive
information from tumour images for therapy outcome predic-
tion [25], [26], [27]. Accordingly, the CNNs can potentially
outperform the traditional radiomic models in diagnostic and
prognostic applications for precision oncology by detecting
patterns in medical images that are not captured by closed-
form mathematical definitions of hand-crafted radiomic fea-
tures [28], [29], [30]. A recent publication from our group
shows that the deep-learning features derived from 2D MRI
slices outperform the standard clinical variables in predicting
radiotherapy outcome in BM [31].

Attention mechanisms in deep learning were introduced
in the field of computer vision with the goal of imitating
the human visual system’s ability to naturally and effec-
tively discover prominent regions in complex scenes [32].
An attention mechanism in a vision system can be thought
of as a dynamic selection process that is implemented by
adaptively weighing features based on the relevance of the
input. Over the past few years, attention mechanism has
played an increasingly important role in different computer
tasks, including image classification [33], object detection
[34], semantic segmentation [35], and 3D vision [36]. The
attention mechanism has shown promise in medical imaging
analysis, especially when the problem is not as straight-
forward as generic image classification, where the well-
defined object of interest is usually in the image center
[37]. A number of previous studies have applied attention
mechanisms to provide more powerful architectures capa-
ble of catching subtle features covered in medical images.
Guan et al. [38] proposed a three-branch attention guided
convolution neural network (AG-CNN) which learns from
disease-specific regions through a local branch to reduce
noise and improve alignment, with a global branch to com-
pensate for the lost discriminative cues by the local branch.
Using a fusion branch to combine the local and global cues,
their model could achieve a new state-of-the-art performance
in classifying images of the ChestX-ray14 dataset [38].
Rao et al. [39] conducted an experimental research to investi-
gate the contribution of various attention mechanisms includ-
ing squeeze-and-excitation (SE) [33], global context (CG)
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[40], and convolutional block attention module (CBAM)
[41] to the performance of deep classification models for
different imaging modalities including x-ray, MRI, and CT.
The experimental results show that the attention mechanisms
enable standard CNN models to focus more on semantically
important and relevant content within features, with improved
area under the receiver operating characteristic (ROC) curve
(AUC) for all classificationmodels investigated [39]. Further-
more, the CBAM outperformed the other two attention mech-
anisms in several experiments on different imaging datasets.
Shaik et al. [42] proposed a multi-level attention mechanism
for the task of brain tumour classification. The proposed
multi-level attention network (MANet) combines spatial and
cross-channel attention, focusing on tumour region priori-
tization while also preserving cross-channel temporal con-
nections found in the Xception backbone’s semantic feature
sequence [42]. They benchmarked their framework on BraTS
[43] and Figshare [44] datasets where their model outper-
formed several models proposed previously for the brain
tumour classification task [42].

This translational study introduces an innovative
transformer-convolutional deep learningmodel for predicting
the LC/LF outcome in BM treated with SRT using two-
channel MRI acquired at pre-treatment. A novel attention-
guided 3D residual network architecture has been developed
with embedded self-attention modules [45], [46], [47] and
compared with another residual network with 3D CBAM as
the attention mechanism. A training recipe has been adapted
for the therapy outcome prediction models during pretraining
and training the down-stream task based on the recently-
proposed big transfer (BiT) principles [48]. A new 3D visu-
alization method has been introduced to illustrate the impact
of different regions throughout the lesion volume upon the
network’s prediction of the therapy outcome. The results
demonstrate that incorporating the attention mechanisms into
the vanilla 3D residual network improves its performance
in outcome prediction considerably, with the self-attention
mechanism outperforming the CBAM in terms of accuracy,
AUC, and F1-score. Further, the adapted BiT-based recipe
for pretraining and hyperparameter tuning improves the deep
models’ performance in therapy outcome prediction.

II. METHODS AND PROCEDURES
A. DATA ACQUISITION
This study was carried out in compliance with the insti-
tutional research ethics board approval from Sunnybrook
Health Sciences Centre (SHSC), Toronto, Canada. Data
were obtained from 124 BM patients treated with hypo-
fractionated SRT (5 fractions). In this study, the base-
line treatment-planning MRI including contrast-enhanced
T1-weighted (T1w), and T2-weighted-fluid-attenuation-
inversion-recovery (T2-FLAIR) images were applied for
therapy outcome prediction. The MRI scans were acquired
using a 1.5 T Ingenia system (Philips Healthcare, Best,
Netherlands) and a 1.5 T Signa HDxt system (GEHealthcare,

Milwaukee, WI, USA). The T1w and T2-FLAIR images had
an in-plane image resolution of 0.5 mm and a slice thickness
of 1.5 mm and 5 mm, respectively. The treatment-planning
tumour contours delineated by expert oncologists as well as
the edema contours outlined under their supervision were
also included in the dataset. The dataset (124 patients with
156 lesions) was randomly partitioned at patient level into a
training set (99 patients with 116 lesions) that was used for
model development and optimization, and an unseen test set
(25 patients with 40 lesions) that was applied for independent
evaluation of the models. From the training set, 10 patients
with 15 lesions were randomly selected as the validation set
for optimizing the model hyperparameters.

The patients were scanned with MRI after SRT on a two
to three-month follow-up schedule. A radiation oncologist
and a neuroradiologist determined the local response for each
lesion separately after monitoring it on serial MRI using
the RANO-BM [8] criteria. The outcome (LC or LF) was
determined for each lesion in the last patient follow-up.
Serial imaging (including perfusion MRI) and/or histolog-
ical confirmation were used to diagnose adverse radiation
effect (ARE) and distinguish it from progressive disease [49],
in accordance with the report by Sneed et al. [50]. Following
these criteria, a total of 93 lesions were categorized as LC
while 63 lesions were labeled as LF.

B. PREPROCESSING
All MR images were resampled to a size of 512× 512× 174
voxels (voxel size: 0.5 × 0.5 × 1 mm3). An affine registra-
tion method was used to co-register the T1w and T2-FLAIR
images. Skull stripping was performed on all MR images.
The voxel intensities in each skull-stripped MRI volume
were normalized between 0 and 1. To ensure a lesion-level
local outcome prediction the size of the smallest sub-volume
enclosing the tumour and edema (lesion) and their 5-mm
outer margin [51], was identified for all lesions. A sub-
volume of 128 × 128 × 83 voxels was determined as a
fit standard to encompass the entire region of interest (ROI)
described above for all individual lesions. The standardized
sub-volumes were then cropped from the T1w and T2-FLAIR
images and concatenated for each lesion as two channels of
data, generating the input to the neural networks with a size
of 128 × 128 × 83 × 2 voxels. The ROI masks (tumour +
5-mm margin for T1w; tumour + edema + 5-mm margin
for T2-FLAIR) were generated using the tumour and edema
contours and applied to mask out the areas outside the ROI
for each lesion.

C. NETWORK OVERVIEW
The backbone of the proposed network architecture is a
vanilla 3D extension of deep residual networks (ResNets),
first introduced by He et al. [52], [53] Instead of learning
unreferenced functions, ResNets learn residual functionswith
reference to the layer inputs. Also, rather than expecting each
few stacked layers directly fit a desired underlying mapping,
ResNets let these layers fit a residual mapping. Formally,
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instead of directly mapping the desired underlying function
H (x), the stacked nonlinear layers fit another mapping of
F (x) := H (x) − x. This way, the original mapping recast
intoF (x)+x. Residual connections allow for increased depth
while addressing the vanishing gradient problem and are also
easier to optimize [52]. Our vanilla 3D residual network
(Figure 1.a) is inspired by the architecture of ResNet-18, but
instead of 2D convolution layers, our network employs 3D
convolution with kernel size of 7 × 7 × 7 and 3D pooling
layers to handle the 3D nature of MRI volume.

To improve the performance of our 3D residual network in
processing multi-channel MRI volumes, we explored incor-
porating two different attentionmechanisms into the architec-
ture, CBAM, and self-attention [46]. CBAM is a simple yet
effective attention module which infers attention maps along
two separate dimensions (channel and spatial) sequentially
[41]. The attention maps are then multiplied by the fea-
ture tensors to produce the refined feature tensors. Formally,
CBAM has two sequential submodules and, given an input
feature tensor x ∈ RX×Y×Z×C , it sequentially infers 1D
channel attention vector McεRC and a 3D spatial attention
map MsεRX×Y×Z . The developed 3D residual network with
CBAM attention is depicted in Figure 1.b. The CBAM atten-
tionmodule (Figure 1.e) is embedded right before the average
pooling and fully-connected layers to refine features before
classification. The refined features are then flattened and fed
to the fully-connected layer for classification.

Additionally, we introduced a novel transformer-
convolutional network architecture by incorporating self-
attention modules into the 3D residual network (Figure 1.c).
The convolution operator in CNNs only conducts local oper-
ations and has a local receptive field, but the self-attention
mechanism can perform non-local operations and capture
long-range dependencies and global information within the
input images [54]. The self-attention method is based on
the covariance between the elements of feature tensors [55].
Formally, a self-attention function can be described through
mapping the input feature tensor to a query, a key, and
a value tensor. The tensor mappings are performed using
3D 1 × 1 × 1 convolutions. Each element of the output
self-attention feature tensor is a linear weighted sum of the
elements of the value tensor. The query tensor defines which
‘‘values’’ to focus on for the learning process, while the key
and value tensors carry the transformed features extracted
from MRI volume. Given that key is k (x) = Wkx, query is
q (x) = Wqx, and value is v (x) = Wvx whereWk ,Wq,Wv are
learnable weights of the 1 × 1 × 1 convolution filters and x
is the feature tensor from the previous layer, the self-attention

map α could be calculated as αi,j =
exp(q(xi)k(xj)

T )∑n
i=1 exp(q(xi)k(xj)

T )
.

Figure 1.f shows the architecture of the 3D self-attention
block incorporated into the proposed 3D residual network
with self-attention. For performing the matrix multipli-
cations in this block, the query, key, and value tensors
(∈ RX×Y×Z×C ) are reshaped into matrices (∈ RXYZ×C ) and,
at the end, reshaped back into tensors of the initial size.

The final 1 × 1 × 1 convolution block ensures that the
number of channels of the input and output feature tensors
stays the same. The 3D self-attention module facilitates
capturing long-range inter/intra slice dependencies, hence is
added to the architecture after each residual block to ensure
deriving such dependencies along with the convolution layers
that mostly capture local features and dependencies. More
details on the network architectures have been provided in
the Supplementary Materials.

D. BIG TRANSFER AND TRAINING DETAILS
Transfer of pretrained models on the target task improves
sample efficiency and simplifies hyperparameter tuningwhen
training deep neural networks [48]. Inspired by the work of
Kolesnikov et al. [48], we followed the subsequent scheme
for pretraining/training the outcome prediction models:
1. The network was first pretrained on the UCF101 dataset

[56] for the task of activity recognition and subsequently
on the BraTS dataset [43], [57], [58] for the task of clas-
sifying brain tumour types using MRI.

2. During pretraining, all batch normalization [59] layers
were replaced with group normalization [60] and weight
standardization [61] was used in all convolutional layers.
The combination of group normalization and weight stan-
dardization with large batches has a significant impact
on transfer learning [62]. Also, due to the requirement to
update running statistics, batch normalization is detrimen-
tal for the transfer [48].

3. During fine-tuning on the main dataset, we used
BiT-HyperRule, a heuristic method for hyperparameter
selection based on image resolution and number of dat-
apoints as presented by [48]. The models were trained
using the stochastic gradient descent (SGD) optimization
algorithmwith an initial learning rate of 0.003,momentum
of 0.9, batch size of 4, and an early stopping based on the
validation loss. Data augmentation was performed using
horizontal flipping. During fine-tuning, the learning rate
was decayed by a factor of 10 at 40%, 60% and 80% of
the training steps.
All experiments were performed in Python. The models

were developed and evaluated using Keras [63] with Tensor-
Flow [64] backend. The performance metrices were calcu-
lated using scikit-learn package [65]. the matplotlib library
was used [66] for visualization. The models were trained
using four GeForce RTX TI 2080 graphic cards. The training
process took 5 hours (∼33M parameters), 6 hours (∼33M
parameters) and 10 hours (∼42M parameters) for 3D resid-
ual network, 3D residual network + CBAM attention, and
3D residual network + self-attention respectively. The total
inference time for a single input is 6ms, 7ms, and 12ms for 3D
residual network, 3D residual network + CBAM attention,
and 3D residual network + self-attention, respectively.

E. VISUALIZATION OF NETWORK DECISION BASIS
A new 3D visualization algorithm was implemented to
accompany the outcome prediction framework and show how
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FIGURE 1. Architecture of (a) vanilla 3D residual network (baseline), (b) the 3D residual network with CBAM attention, (c) the proposed
self-attention-guided 3D residual network, (d) the residual block in 3D residual network, consisting of residual connections, (e) the CBAM
attention block consisting of the channel and spatial attention modules, and (f) the self-attention block consisting of the key, query, and
value tensors that generates the final self-attention feature tensor.
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FIGURE 2. Training loss of the three models investigated in this study before and after applying BiT training scheme. Following the BiT training recipe
generally led to faster convergence, smaller loss, and better performance overall.

different areas within the volumetric region of interest on
the input images contribute to the prediction of network for
each lesion. The visualization module provides a 3D heatmap
color-coding the relevance of distinct peri-/intra-lesion areas
on multi-channel volumetric MRI to the decision of network
and may be applied to analyze the reasoning behind the
predicted outcome for each case. The applied visualization
method combined a modified version of the prediction differ-
ence analysis (PDA) with a sliding window analysis approach
[67]. A 2 × 2 × 1 voxel sliding black cube (1 × 1 × 1 mm)
was iteratively applied to block a tiny area of the input
image. The occluded input was fed to the trained network
to predict the associated therapy outcome. In each iteration,
the absolute difference in the network’s output probability
(i.e., |pinput − poccluded_input |) was calculated and applied as
a measure of contribution of the occluded cube to generate
the volumetric heatmap. This method generates a point cloud
where each point in the cloud maps to a region within the
MRI volume. For 3D visualization of generated heatmap, the
heatmap voxels were considered as a point cloud with each
point maps to a region within the MRI volume. A surface
reconstruction technique was adapted to create a 3D heatmap
out of the point cloud on any desired surface within the
volumetric ROI. Specifically, the cloud points located on the
ROI surface were identified and the normal orientation of
the point cloud was calculated at each surface point using a
minimum spanning tree with the number of neighbours set to
3 for building the tree [68]. The estimated normal orientations
were applied in conjunction with, the Poisson reconstruction
technique [69] to build a smooth surface mesh from the
point cloud. The Poisson surface reconstruction technique
creates a 3D mesh from a dense point cloud by reducing
the difference between the surface normal directions of the
reconstructed surface and the 3D points in the point cloud
[70]. The proposed 3D visualization framework can assist
clinicians to get insight into how the network has reached
its decision and help to validate the network’s decisions by
generating meaningful heatmaps. More details on the visu-
alization framework have been provided in Supplementary
Materials.

III. RESULTS
The patients (average age: 62± 15 years; 40%male and 60%
female) had an average tumour size of 2 ± 1.03 cm and an
average GPA of 2.2. The demographic and clinical attributes
of the patients in this study are presented in Supplementary
Table S1.

Figure 2 shows the training loss over 300 epochs for
the models in this study before and after applying the BiT
training scheme. The vanilla 3D residual network pretrained
on the UFC101 and BraTS datasets (without BiT scheme)
is the baseline model of this study. In pretraining/training of
the models without the BiT recipe, the batch normalization
layers were not replaced with group normalization and the
weight standardization and BiT-HyperRule were not applied.
Table 1 presents the performance of different models inves-
tigated in this study for radiotherapy outcome prediction.
A careful investigation of Figure 2 and Table 1 demon-
strates that incorporating the BiT scheme in development of
the deep models for outcome prediction generally improves
their performance in terms of convergence, loss, F1-score,
and AUC on the independent test set. The F1-score and
AUC may be considered the most important metrics pre-
sented in Table 1 because of the imbalance exists in the
dataset. Specifically, following the BiT training scheme, the
models improved their AUC on the test set from 0.83 to
0.84, 0.87 to 0.88, and 0.88 to 0.91 for the 3D residual
network, 3D residual network + CBAM attention, and 3D
residual network + self-attention, respectively. From a dif-
ferent perspective, incorporating attention mechanisms also
improved themodel performances in terms of accuracy, AUC,
and F1-score. While the vanilla 3D residual network could
achieve an F1-score of 75% on the test set, the 3D residual
network + CBAM attention improved the F1-score by 2.8%.
The F1-scorewas improved by 3.8% compared to the baseline
model by including the self-attention mechanism in the 3D
residual network. In particular, the proposed transformer-
convolutional network architecture with BiT training demon-
strated the best performance in terms of accuracy, AUC,
and F1-score, with 8% and 5% improvements in AUC and
F1-score, respectively, compared to the baseline model, on
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TABLE 1. Results of radiotherapy outcome prediction for different models. Acc: Accuracy; Sens: sensitivity; Spec: specificity.

FIGURE 3. The ROC curves for (a) vanilla 3D residual network, 3D residual network + CBAM, and 3D residual network +

self-attention, and (b) the same models trained with the BiT scheme.

FIGURE 4. 3D visualization heatmaps corresponding to the two input channels (T1w and T2-FLAIR) of the 3D residual network with
self-attention and BiT training for two representative lesions, one with an LF (top) and the other one with an LC (bottom) outcome.
The user can inspect any desired area on the lesion/margin surface or inside the volumetric ROI and their correspondence with the
MRI channels.
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the independent test set. This is a considerable improve-
ment in model’s performance given the complicated task
at hand. Further, the proposed model resulted in the most
balanced sensitivity and specificity values compared to the
other models despite the imbalanced dataset applied in the
study. Figure 3 shows the ROC curves for different models
investigated in this study.

An explanation of how an attention mechanism helps
improving the performance of the deep models in therapy
outcome prediction is as follows: characteristics of different
regions within tumour and peritumoral areas on MRI con-
tribute unequally to the likelihood of local response. Several
studies demonstrate that tumour margin areas on MRI carry
invaluable information regarding the responsiveness of BM to
radiotherapy with possibly higher importance for prediction
modeling compared to the core areas [51], [71]. Attention
mechanisms help the network to capture the subtle informa-
tion latent within MRI by filtering out irrelevant data and
focusing on regions which truly contribute to the network
decisions. Moreover, self-attention facilitates capturing long-
range dependencies inside the MRI volume, an important
concept that simple 3D convolutional layers are not capa-
ble of because of their local nature and limited field of
view. Comparing the performance of 3D residual network
+ CBAM attention and the vanilla 3D residual network, the
former has outperformed the latter in terms of AUC and
F1-Score, although the number of parameters is almost the
same for these networks. This shows the benefit of incor-
porating attention mechanisms in this setting while it may
not increase the network complexity considerably. Our fur-
ther experiments with the 3D residual network with more
parameters (∼40Mparameters) when extra layers were added
to the network resulted in overfitting. This implies that the
3D residual network + self-attention does not simply benefit
from the increased number of network parameters but mainly
from the structure of the attention layers incorporated. Fig-
ure 4 demonstrates the 3D visualization heatmaps for two rep-
resentative lesions generated using the technique introduced
in Section II-E. The heatmaps show the contribution level of
different regions within the volumetric ROI on the prediction
of the proposed attention-guided model for each lesion in
terms of local outcome. The 3D heatmaps can aid clinicians to
examine the lesion volume thoroughly and inspect impactful
regions for a predicted outcome which can eventually support
their decision making in assessment, diagnosis, and treatment
planning.

IV. DISCUSSION AND CONCLUSION
An end-to-end 3D convolutional deep learning architecture
with self-attention was introduced in this study to predict the
local outcome in BM after radiotherapy. By employing 3D
residual blocks in the proposed model, we investigated the
possibility of early prediction of LF in BM treated with SRT
using T1w and T2-FLAIRMRI volumes acquired at baseline.
We further investigated the effect of incorporating attention
mechanisms into the 3D residual network. The results show

that the proposed model with self-attention mechanism out-
performs the vanilla 3D residual network and the 3D residual
network with CBAM attention in terms of accuracy, AUC,
and F1-score. The proposed architecture combines residual
learning with self-attention mechanism, allowing for full uti-
lization of both global and local information while avoiding
information loss. Specifically, the self-attention mechanism
in the model takes into account long-range dependencies in
the input MRI volumes while the residual connections allow
the extracted information to persist throughout the network.
We further improved the model’s performance by following
the BiT scheme for pretraining and hyperparameter tuning.
A 3D visualization module was developed and coupled with
the framework to show the important areas of lesion on MRI
with higher impact on the model’s decision. The visualiza-
tion results confirm the findings of previous studies that the
characteristics of tumour/lesion margin areas on T1w and
T2-FLAIR images are important for predicting local outcome
in BM treated with radiation therapy. In particular, these
regions are among the high-impact regions to the predictions
made by the proposed deep learning model with more atten-
tion gained from the model for therapy outcome prediction.

The findings of this study demonstrate the feasibility of
early prediction of radiotherapy outcome for BM using only
the features extracted from multi-modal MRI volumes. This
study highlights the effect of adding attention mechanism to
deep networks and the importance of pretraining in transfer-
ring knowledge to the fine-tuning step. When dealing with
large models and large datasets (which is usually the case
during pretraining) adhering to the BiT recipe allows for
optimized training during the up-stream task and a compu-
tationally inexpensive fine-tuning protocol during the down-
stream task to avoid a complex and costly hyper-parameter
search. The obtained results are promising and encourage
future studies on larger patient populations. The results of
this study were obtained using an independent test set that
was kept unseen during the model training and optimization.
However, for a more rigorous evaluation of the efficacy and
robustness of the models in the clinic, further investigations
should be performed on larger patient cohorts and preferably
with multi-institutional data.
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