
  

  

Abstract— Accurate segmentation of nuclei is an essential step 

in analysis of digital histology images for diagnostic and 

prognostic applications. Despite recent advances in automated 

frameworks for nuclei segmentation, this task is still challenging. 

Specifically, detecting small nuclei in large-scale histology 

images and delineating the border of touching nuclei accurately 

is a complicated task even for advanced deep neural networks. 

In this study, a cascaded deep learning framework is proposed 

to segment nuclei accurately in digitized microscopy images of 

histology slides. A U-Net based model with customized pixel-

wised weighted loss function is adapted in the proposed 

framework, followed by a U-Net based model with VGG16 

backbone and a soft Dice loss function. The model was 

pretrained on the Post-NAT-BRCA public dataset before 

training and independent evaluation on the MoNuSeg dataset. 

The cascaded model could outperform the other state-of-the-art 

models with an AJI of 0.72 and a F1-score of 0.83 on the 

MoNuSeg test set. 
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I. INTRODUCTION 

Cancer is a major cause of mortality worldwide, accounting 
for about 10 million deaths in 2020 [1], [2]. Breast cancer is 
the most prevalent malignancy and the second leading cause 
of cancer death in women [3]. Early stage diagnosis of breast 
cancer is effective in preserving treatment options, reducing 
costs, and improving the survival and quality of life for 
patients [4]. While standard clinical imaging such as 
mammography and ultrasound are widely used for breast 
cancer screening, a biopsy followed by histopathology 
analysis on the acquired specimens is the gold standard for 
definitive diagnosis of breast cancer [5]. Recent studies have 
been shown that quantitative features describing the 
morphology, distribution, and texture of the tumor nuclei on 
digital histology images can be used in machine learning 
frameworks for various diagnostic, tissue characterization and 
prognostic applications [6], [7]. Accurate nuclei segmentation 
is an essential step of extracting such features from the 
histopathology images [8], [9].  

    Recent advances in deep convolutional networks have led 
several researchers to propose data-driven frameworks for 
automated image segmentation [10]. The proposed techniques 
mostly comprise an encoder-decoder architecture [11]. The 
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requirement for accurate segmentation in addition to the lack 
of labeled training data raises the importance of developing a 
task-specific framework for segmenting medical and 
biomedical images [12]. The U-Net architecture [13] that 
consists of two symmetric contracting and expanding paths, 
was specifically introduced for biomedical image 
segmentation. The proposed model could be trained with a 
relatively small training set, and it could outperform the other 
frameworks in the ISBI cell tracking challenge 2015 [14]. 
However, U-Net struggles with finding the exact border of 
nuclei, and in practice, the model cannot accurately segment 
the touching or very close nuclei.  

    The emergence of U-Net has opened pathways for variants 
of its architecture to enhance the performance of segmentation 
tasks in biomedical images. The attention U-Net was proposed 
to improve the segmentation performance by integrating grid-
based attention gates (AGs) on top of U-Net architecture [15]. 
Models trained with the AGs learn to suppress unnecessary 
regions in an input image while highlighting important 
features for a particular task. Each skip connection's gating 
signal incorporates image features from multiple imaging 
scales to remove the requirement of having explicit tissue 
localization modules. The attention U-Net model has been 
originally proposed for segmenting pancreas in computed 
tomography (CT) abdominal images [15], but then adapted in 
other application including nuclei segmentation [16]. The U-
Net++ which has a deeply supervised encoder-decoder 
architecture, is another proposed variant of U-Net to enhance 
the performance of biomedical image segmentation 
frameworks [17].  In the proposed model, the encoder and 
decoder sub-networks are linked through several nested dense 
skip connections. The redesigned skip paths aim to minimize 
the semantic gap between the feature maps of the encoder and 
decoder blocks in the network.  

    Due to the importance of nuclei segmentation in digital 
histology images, a dataset was introduced for the multi-organ 
nuclei segmentation (MoNuSeg) challenge in MICCAI 2018 
[18]. Several studies have investigated various approaches to 
achieve the best result in this challenge. In [8], a contour-aware 
informative aggregation network (CIA-Net) was presented as 
an innovative deep neural network with a hierarchical 
information aggregation module between two task-specific 
decoders. The proposed architecture could enhance the 
generalization ability of the framework in segmenting the 
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unseen organ nuclei. In [12], a pretrained EfficientNet was 
applied as the backbone of U-Net++ architecture for the breast 
tumor nuclei segmentation. The adapted backbone resulted in 
having fewer parameters and outperformed previous 
convolutional neural networks (CNNs) in terms of efficiency 
and accuracy. In [19], a novel self-supervised learning 
framework was introduced that fully exploits the capacity of 
extensively employed CNNs. The proposed method entails 
two sub-tasks of scale-wise triplet learning and count ranking, 
which allow the networks to exploit prior knowledge about 
nucleus size and number to extract instance-aware feature 
representations from the raw information. Most of the previous 
studies have demonstrated suboptimal performance in finding 
the border of the nuclei accurately, and in practice, touching or 
very close nuclei are always challenging to be segmented.  

    In this study, a novel cascaded framework is investigated to 
overcome the limitations of previous models and improve the 
accuracy of nuclei segmentation in histology images. The 
framework consists of a weighted U-Net model followed by a 
U-Net architecture with a VGG16 backbone and a soft Dice 
loss function. The weighted pixel-wise masks were generated 
for the training data and utilized along with the binary masks 
in calculating the loss function for the weighted U-Net in order 
to train the model to classify the touching and very close nuclei 
more accurately. The obtained results demonstrated a 
considerably better performance of the proposed model 
compared to each of the single networks and the previously 
proposed frameworks. 

II. MATERIALS AND METHODS  

A. Dataset 

The proposed framework was pretrained using the Post-
NAT-BRCA dataset collected from the cancer imaging 
archive (TCIA) [20], and trained and evaluated using the 
multi-organ nuclei segmentation (MoNuSeg) dataset [18]. All 
the histology images were H&E stained and scanned at 40x 
magnification. The Post-NAT-BRCA dataset includes 
histology images of surgical tissue specimens acquired from 
breast cancer patients following neoadjuvant therapy (NAT). 
The nuclei in these images were annotated manually using the 
Sedeen software (Pathcore, Toronto, Canada). The dataset 
contains 92 histology images of various size, with a total of 
25,675 annotated nuclei. The MoNuSeg dataset consists of 
thirty training histology images and fourteen test images with 
a size of 1000 × 1000 pixel, collected from seven organs (i.e., 
breast, liver, kidney, prostate, bladder, colon, stomach). The 
MoNuSeg training and test sets contain 21,623 and 7,223 
annotated nuclei, respectively. In this study, the MoNuSeg 
training set was randomly split into the training (80%) and 
validation (20%) sets at patient level.  

B. Data Preprocessing 

All histology images in the MoNuSeg dataset were zero 
padded to a size of 1024 × 1024 pixel (12 padded pixels from 
each side), and then patched to 16 non-overlapped patches of 
size 256 × 256 pixel. A total of 664 patches with the same size 
(256 × 256 pixel) were extracted from the Post-NAT-BRCA 
dataset for model pretraining. 

The binary masks were generated for each image patch. 
The weighted masks were only generated for the patches of the 
training set. The weight of each pixel (x) in the weighted mask 

was calculated using the Equation 1 [13]. Each weighted mask 
was then normalized to the range [0, 1]. 

 𝑤(𝑥) = 𝑤𝑐(𝑥) + 𝑤0 × 𝑒𝑥𝑝 (−
(𝑑1(𝑥)+𝑑2(𝑥))

2

2𝜎2 )       (1)   

In Equation 1, 𝑤𝑐 is the binary mask, 𝑑1 is the distance to the 
border of the nearest nucleus, and 𝑑2 is the distance to the 
border of the second nearest nucleus. 𝑤0 and 𝜎 are constants 
that were selected empirically. Using this equation for 
generating the weighted masks, the pixels between closely 
adjacent nuclei are assigned higher weights in order to force 
the model to learn the separation in these regions with higher 
priority during the training process when a weighted loss 
function is applied. 

C. Framework 

The proposed cascaded framework consists of a U-Net 
model with a weighted pixel-wised loss function followed by 
a vanilla U-Net model with a VGG16 backbone and a soft Dice 
loss function [21], [22]. An effective nuclei segmentation 
model should learn the separation between adjacent nuclei 
while pixel-level accuracy is insufficient to evaluate the model 
on large histology images with many nuclei. This is because 
the number of pixels between the touching or very close nuclei 
are typically very few compared to the entire image and 
misclassifying them does not affect the pixel-level accuracy 
considerably during the model training. Generally, such 
separation can be accomplished by performing morphological 
operations on the images, but these operations are difficult to 
be incorporated into the model's learning process. As an 
alternative approach, the network could be forced to learn zone 
separations exclusively from the data. Following this 
approach, the pre-calculated weight maps were incorporated 
into the loss function to penalizes the loss in border areas 
between the touching or very close nuclei more than anywhere 
else (Equation 1) [13]. Considering the constant parameters in 
Equation 1 (𝑤0, 𝜎), there is a trade-off between the level of loss 
penalty for the border pixels between touching or very close 
nuclei, and the priority of not missing the entire (small) nuclei. 
In this equation, a higher value of 𝑤0  results in increasing the 
weight difference between the nuclei (foreground) and 
background regions within the border areas, while increasing 
the value of 𝜎 increases the difference in pixel weights based 
on the distance to the adjacent nuclei. On this basis, if the 
weighted U-Net is utilized with a high penalization weight for 
the areas near the touching or very close nuclei, the model 
would fail to detect many small nuclei or the center regions of 
larger objects, and in case a low penalization weight is applied, 
the model would fail in detecting the border of very close 
nuclei accurately. The cascaded segmentation framework in 
this study was proposed to address this issue by balancing the 
trade-off between detecting the small nuclei and segmenting 
the border of touching or very close nuclei accurately. 

For training the weighted U-Net the loss function was 
modified from the regular cross entropy to a weighted cross 
entropy by multiplying 𝑤(𝑥) to it. In computing the custom 
loss function, the weights were applied to the log of the 
activation before calculating the pixel-wise sum. In the 
implementation step, as the model needs an ordinary loss 
function for training optimization, three non-trainable layers 
were added at the end of the weighted U-Net model for the 
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training phase to embed the weighting of the log of the 
activation into the model and only leaving the summation step 
to the custom loss function. In this phase, the weighted U-Net 
was fed by the training images along with the corresponding 
binary and weighted masks and the segmentation probability 
maps were generated as the output of the model. The 
probability maps along with the binary masks were passed to 
the second component of the framework, i.e., the vanilla U-
Net model with a VGG16 backbone and a soft Dice loss 
function. The reason for adding the VGG16 backbone is to 
reduce the number of network parameters for a better 
generalization. The choice of a smaller convolution kernel 
(i.e., 3×3) is indeed a key to VGG's remarkable 
accomplishment. Compared to other networks such as ResNet 
[23] or AlexNet [24], when acquiring the same receptive field, 
a smaller convolution kernel can not only use less computation 
and provide more non-linearity, but  also make the model more 
powerful in fitting ability [21]. The choice of the soft Dice loss 
function potentially results in penalizing low-confidence 
predictions of the nuclei, since the ground truth is binary in this 
model and only the pixels belong to the nuclei are considered 
in the loss calculation. 

The proposed approach needs calculation of weighted masks 

for each input image, while in the test phase this information 

is not available. Considering that the last layers of the 

weighted U-Net model are non-trainable and only used for 

loss calculation, we address this issue by initializing two 

different models for the training and test phases. Specifically, 

the training model applied both the weighted and binary 

masks as the ground truth for the weighted loss calculation, 

whereas the test model only applied the binary masks for 

model evaluation on the unseen samples using the output of 

the layer before the non-trainable layers. 

D. Postprocessing 

    Two morphological operations of erosion and dilation with 

the kernel size of five pixels were applied on the predicted 

segmentation masks to remove very small pixel clusters 

associated with noise., Considering that the histology slides 

were scanned at 40x magnification, the nuclei could not be 

apparent with such a small diameter on the images. It should 

be noted that since this post processing step only removes 

very small pixel clusters it would mainly improve the F1-

score, with minimal effect on the Aggregated Jaccard Index 

(AJI) metric. At the end, the segmentation masks generated 

for the patches of each image were concatenated to 

reconstruct the whole image masks (1000 ×1000 pixel) for 

evaluation. 

E. Evaluation 

    Performance of the proposed model was evaluated on the 

MuNoSeg test set and compared with other state-of-the-art 

segmentation frameworks. The evaluation was performed at 

both the object-level (nuclei detection) and pixel-level 

(accuracy of nuclei segmentation contours), using the F1-

score and AJI metrics, respectively. In calculating the F1-

score, the true positive (TP), false positive (FP) and false 

negative (FN) were determined as the number of correctly 

detected, wrongly detected, and undetected nuclei in each 

image, respectively. 

III. RESULTS 

Figure 1 demonstrates weighted masks generated for a 
representative patch with different constant values. In this 
study, the values of 𝑤0 = 3 and 𝜎 = 10 were selected 
empirically for these parameters to force the weighed model to 
differentiate between the nuclei and the background regions 
within the border area of very close nuclei with high 
confidence. The generated weighted mask resulted in 
distinguishing the touching nuclei effectively, while missing 
some small nuclei and the center region of the larger nuclei. 
The probability maps generated by the first network were 
passed to the second network to enhance the final prediction 
mask. Figure 2 compares the output of different trained model 
on MoNuSeg test set with the ground truth. The segmentation 
mask generated by the attention U-Net (Figure 2(a, b)) and 
vanilla U-Net (Figure 2(c, d)) lacks accuracy in finding the 
nuclei boarders, particularly for the very close nuclei. The 
generated mask in Figure 2(e, f) shows the ability of the 
weighted U-Net model in separating the touching nuclei, 
however, the model missed to detect a few small nuclei and 
the center of few larger nuclei. The cascaded model (Figure 
2(g, h)) took advantage of both networks in finding the 
accurate border of very close nuclei, detecting small nuclei and 
completely annotating the larger nuclei. Table 1 shows the 
performance of the proposed model on the MoNuSeg dataset 
compared to the attention U-net, vanilla U-Net with the 
VGG16 backbone and the weighted U-Net model in terms of 
AJI and F1-score metrics for the training, validation, and 
unseen test sets. The cascaded model could outperform each 
single model in all metrics. Table 2 demonstrates the AJI of 
the top five state-of-the-art models on the same dataset based 
on the MoNuSeg test set leaderboard, where the superior 
performance of the cascaded model in nuclei segmentation 
task is indicated.  

IV. DISCUSSION AND CONCLUSION 

In this study, a cascaded U-Net based framework was 
proposed for segmenting the nuclei in digital histology images 
accurately. A U-Net model with a pixel-wised weighted loss 
function followed by a vanilla U-Net with a VGG16 backbone 
were adapted in the framework to annotate the touching nuclei 
accurately while keeping the number of correctly detected 
nuclei as high as possible. Three non-trainable layers were 
added to the weighted U-Net model to calculate the pixel-
wised weighted loss function during the training phase. The 
probability maps generated by the weighted U-Net were 
passed to the U-Net model with the VGG16 backbone and a 
soft Dice loss function to generate the final masks. The 
weighted U-Net was responsible to remove the deceptive 
texture in the background which could be incorrectly 
considered as object (nuclei) and detect the border of the 
touching nuclei with high precision while the second U-Net 
was in charge of giving the same priority to all pixels to detect 
small nuclei and the missed (center) regions in the larger 
nuclei. The proposed framework could generate the binary 
mask on MoNuSeg test set with an AJI of 0.72, which shows 
a considerable improvement compared to the previous models. 
Whereas the cascaded model could outperform the former 
models, further investigation is still required with the state-of-
the-art methods to evaluate and potentially improve the 
performance of the nuclei segmentation framework on larger 
datasets.  
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TABLE I.  PERFORMANCE OF THE PROPOSED MODEL ON THE MONUSEG 

DATASET 

Model 
Training  Validation Test  

AJI F1 AJI F1 AJI F1 

Attention U-Net 0.70 0.79 0.67 0.76 0.67 0.74 

Vanilla  

U-Net with VGG16 backbone 
0.70 0.80 0.68 0.77 0.68 0.76 

Weighted U-Net 0.72 0.82 0.72 0.81 0.70 0.79 

Cascaded Model 0.74 0.84 0.73 0.84 0.72 0.83 

TABLE II.  COMPARISON OF THE PROPOSED MODEL PERFORMANCE WITH 

OTHER STATE-OF-THE-ART MODELS 

Segmentation Model AJI 

Yunzhi [18] 0.68 

 Pku.hzq [18] 0.69 

BUPT.J.LI [18] 0.69 

CIA-Net [8] 0.70 

U-Net++ [17] 0.70 

SSL [25] 0.71 

Proposed Cascaded Model 0.72 
 

 
Figure 1.  The binary and normalized weighted masks generated for a 

representative histology image patch (a) with different parameters: (b) binary 

ground truth (𝑤0 = 0), (c) 𝑤0 = 5, 𝜎 = 10, (d) 𝑤0 = 3, 𝜎 = 10, and (e) 

𝑤0 = 10, 𝜎 = 5. 

 
Figure 2.  Comparison of the output segmentation masks of different 

networks with ground truth for two representative patches (256×256 pixel): 

(a, b) attention U-Net, (c, d) vanilla U-Net with the VGG16 backbone, (e, f) 

weighted U-Net, (g, h) cascaded framework. The pixel colors indicate true 

positive (green), true negative (black), false positive (yellow), and false 

negative (red). 
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