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ABSTRACT

Progress in computing power and advances in medical imaging
over recent decades have culminated in new opportunities for arti-

ficial intelligence (AI), computer vision, and using radiomics to
facilitate clinical decision-making. These opportunities are growing
in medical specialties, such as radiology, pathology, and oncology.

As medical imaging and pathology are becoming increasingly digi-
tized, it is recently recognized that harnessing data from digital im-
ages can yield parameters that reflect the underlying biology and
physiology of various malignancies. This greater understanding of

the behaviour of cancer can potentially improve on therapeutic
strategies. In addition, the use of AI is particularly appealing in
oncology to facilitate the detection of malignancies, to predict

the likelihood of tumor response to treatments, and to prognosti-
cate the patients’ risk of cancer-related mortality. AI will be critical
for identifying candidate biomarkers from digital imaging and

developing robust and reliable predictive models. These models
will be used to personalize oncologic treatment strategies, and iden-
tify confounding variables that are related to the complex biology
of tumors and diversity of patient-related factors (ie, mining ‘‘big

data’’). This commentary describes the growing body of work
focussed on AI for precision oncology. Advances in AI-driven
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computer vision and machine learning are opening new pathways

that can potentially impact patient outcomes through response-
guided adaptive treatments and targeted therapies based on radio-
mic and pathomic analysis.
R�ESUM�E

Les progr�es dans la puissance des ordinateurs et les avanc�ees en im-
agerie m�edicale au fil des derni�eres d�ecennies ont men�e �a de nouvelles
avenues pour l’intelligence artificielle (IA), la vision artificielle et
l’utilisation de la radiomique pour faciliter la prise de d�ecision clin-

ique. Ces avenues s’ouvrent de plus en plus largement dans des
sp�ecialit�es m�edicales comme la radiologie, la pathologie et l’oncolo-
gie. L’imagerie m�edicale et la pathologie �etant de plus en plus

num�eris�ees, on a r�ecemment reconnu que les donn�ees provenant
des images num�eriques pouvaient fournir des param�etres refl�etant
la biologie et la physiologie sous-jacentes de diff�erentes tumeurs ma-

lignes. Cette compr�ehension accrue du comportement du cancer
pourrait potentiellement nous permettre d’am�eliorer nos strat�egies
th�erapeutiques. De plus, le recours �a l’intelligence artificielle est par-
ticuli�erement attrayant en oncologie, pour faciliter la d�etection des

tumeurs, pr�edire la probabilit�e de r�eponse tumorale aux traitements
et �etablir un pronostic quant au risque de mortalit�e li�e au cancer pour
le patient. L’intelligence artificielle jouera un rôle essentiel dans

l’identification des biomarqueurs candidats pour l’imagerie m�edicale,
le d�eveloppement de mod�eles pr�edictifs robustes et fiables pouvant
être utilis�es pour personnaliser les strat�egies de traitement en oncolo-

gie et par la reconnaissance de tendances parmi le grand nombre de
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variables confondantes associ�ees �a la biologie complexe des tumeurs
et �a la vari�et�e des facteurs reli�es aux patients (l’exploration des

donn�ees massives). Ce commentaire d�ecrit le nombre grandissant
de travaux mettant l’accent sur l’intelligence artificielle et l’oncologie
de pr�ecision. Les avanc�ees dans la vision artificielle guid�ee par IA et
W.T. Tran et al./Journal of Medical Imaging an
l’apprentissage machine ouvrent de nouvelles avenues qui pourraient
potentiellement avoir une incidence sur les r�esultats pour les patients
par des traitements adaptatifs guid�es par la r�eaction et les th�erapies
cibl�ees bas�ees sir l’analyse radiomique.
Keywords: Breast cancer; radiomics; pathomics; pathology; digital pathology; informatics

Introduction (4) prognostication. Deep learning has been shown to be useful
In 1965, Gordon Moore, the cofounder of Fairchild Semicon-
ductors International Inc, who later became the chief executive
officer of Intel Corporation, released a white paper entitled,
‘‘Cramming more components onto integrated circuits’’ [1].
His paper described the rapid rate of development in
computing hardware; specifically, he projected that the num-
ber of components per integrated circuit (ie, the computer
chip) would double every 12 months, conferring increasingly
greater computational power over time. Subsequently, Moore
had revised his model with components doubling every
24 months, a phenomenon that is known today as Moore’s
Law. Indeed, Moore’s Law has been well observed; there
has been an unprecedented expansion in computer engineer-
ing, technology, and capability over recent decades.

Computers continue to be at the forefront of opportunities
for industrial development, societal growth, and advancing
medical science. In the modern medical era, computers (hard-
ware and software components) are critical for aiding diagnosis
and delivering medical treatment, with widespread uses in the
medical specialities, such as ophthalmology, radiation
oncology, radiology, and surgery. Computers are also virtual re-
positories for petabytes (1015 bytes) of data that contain med-
ical images, clinical reports, medical progress notes, and patient
demographic information. These large data sets are centralized
in high-capacity computer servers that are, in principle,
minable (ie, ‘‘big data’’) using artificial intelligence (AI) algo-
rithms to gain actionable insight for clinical decision-making.

AI is a domain of computer science that employs mathemat-
ical and statistical algorithms tomakemachine-based inferences
that would otherwise be performed by human cognition. The
inferences generated through AI are grounded in underlying
data including knowledge, symbols, perceptions, observations,
patterns, reasoning, and constraints. Subdomains of AI also
include machine learning. Machine learning uses algorithms
to recognize patterns and relationships from available training
data to cluster or classify new data samples [2]. Deep learning,
a recently introduced branch of machine learning, applies a sys-
tem of artificial neural networks (ANNs) with several hidden
layers that compute a transformation of the underlying data
that result in an output layer associated with a class [3].

Machine learning and deep learning models have also been
adapted for studies in medicine; particularly, in oncology, there
is ongoing research to address clinical challenges, which include
(1) accurate computer-aided diagnoses, (2) monitoring drug ef-
ficacy, (3) predicting treatment response (ie, theranostics), and
for detecting and segmenting malignancies captured in medical
images and extracting relevant biomarkers from quantitative
and functional imaging. The process of extracting information
from images and studying high-dimensional imaging bio-
markers for predictive and prognostic modelling is known as
radiomics [4]. Radiomics and AI hold the promise of providing
clinicians and patients with information that can possibly guide
treatments, personalize therapeutic strategies, reduce the delays
in diagnosis, and may also play a role in preventative oncology.

In this commentary, we present principles and applications of
AI (including machine learning and deep learning), and radio-
mics for precision oncology within the context of breast cancer.
This commentary comprises four sections. In Section
Radiomics, the concept of radiomics is presented. Here, we
outline image processing techniques and the use of AI to attain
radiomic features. In Section Machine Learning Classification
in Oncology, machine learning constructs in the context of
modelling and classification are presented. Commonly imple-
mentedAI algorithmsare presented for breast cancer studies. Sec-
tion Pathomics: Machine Learning Applications in Breast
Oncology describes emerging applications of AI in pathology
as they are related to oncology (ie, pathomics). Finally, current
challenges and opportunities forAI in breast cancer are discussed.
Radiomics

Digital imaging has succeeded analog radiology systems in
modern clinics. This is attributed to the increased utilization
of electronic signal detectors that constitute more recent devices
such as computed tomography (CT), magnetic resonance im-
aging (MRI), and digital X-ray. Computers are an essential
component to reconstruct digital images into formats, such
as, DICOMs (digital imaging and communication in medi-
cine) that can be retrieved, reviewed, and processed for system-
atic data mining through radiomics frameworks. The
widespread implementation of digital radiology has afforded
greater opportunities for radiomics analysis; for example, access
to large medical imaging and informatics databases for the pur-
pose of extracting biomarkers related to cancer detection, diag-
nosis, treatment, and surveillance. Medical images can also
yield information about tissue phenotypes and the underlying
physiology. Such radiomic descriptors include morphological
features of lesions, as well as first-, second-, or higher-order in-
tensity features (textures) that can be linked to tissue micro-
structure and heterogeneity. It may also be used to relay
d Radiation Sciences 50 (2019) S32-S41 S33



functional characteristics of tumors, such as, blood flow, cell
metabolism, and cell death. The synergy between radiomics
and AI can confer insight into the tumor’s behaviour (eg, iden-
tifying aggressive vs. indolent tumors), and this insight can
potentially aid clinical decision-making in breast cancer man-
agement. However, major challenges involve robust data prov-
enance; that is, machine learning and deep learning models are
only as good as the input data. In essence, erroneous radiomic
data sets will inevitably result in faulty, inaccurate, or overesti-
mated models that are not reproducible, repeatable, or ulti-
mately, clinically useful. Overcoming these challenges may be
addressed, in part, by adhering to standard protocols within
the radiomics pipeline (described in the following sections).
Radiomics Pipeline and Features
Radiomics analysis is a multistep process that includes (1)
standard image acquisition protocols, (2) segmentation (region
of interest delineation), (3) feature extraction, and (4) analysis
and modelling (Figure 1) [5]. Standard imaging employs pa-
rameters that are optimal and reproducible during acquisition
and data collection. Segmentation is the process of delineating
the anatomical region that will be targeted for image analysis.
Feature extraction is the process by which image processing
yields candidate parameters, features, or biomarkers for classifi-
cation. Finally, analysis and modelling organize the data and
calculate statistical associations between features and the task
or outcome. At each step, establishing robust data provenance
is critical to obtain reproducible and repeatable results for clin-
ical translation. Repeatability involves measuring the imaging
biomarkers from the same subject (ie, patient), equipment, or
software to ensure that the measurements are consistent from
one test series to the next. Reproducibility focuses on obtaining
the same results using different imaging devices (eg, two
different MRI scanners with similar settings), different users,
or different software [6]. Reproducibility and repeatability are
major challenges within each step of the radiomics pipeline
and may potentially be addressed by automated analysis that
is driven by AI. Radiomics features can be derived using second-
Figure 1. Radiomics pipeline. Images are acquired using standard and protocol-base

aging biomarkers are obtained using first-, second-, or higher-order features. The la
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or higher-order statistical approaches from image processing.
Second-order analysis includes texture analysis, which quanti-
tates image heterogeneity by quantifying pixel-to-pixel relation-
ships that have been previously described elsewhere [7]. Briefly,
grey-level textures, including Haralick features, have been widely
studied for radiomics analysis [8,9]. Second-order texture fea-
tures can be extracted from medical images using (1) grey-
level co-occurrence matrix; (2) grey-level run length matrix;
and (3) neighborhood grey tone difference matrix.
Machine Learning Classification in Oncology

Employing machine learning algorithms for categorization of
disease traits and predicting clinical endpoints (eg, tumor recur-
rence risk) depend heavily on constraints to the classifier model
itself. In this section, we present considerations for implement-
ing machine learning classifiers within the oncology context.

Overall, machine learning algorithms are structured to
explore training data, identify patterns and relationships,
and devise models that relate the data to measured outcomes.
In general, machine learning algorithms are trained to find the
relationship between the independent variable(s) ‘‘X’’ and
outcome/dependent variable(s) ‘‘Y.’’ The independent vari-
ables (ie, ‘‘X’’ variables) are known as descriptors, features, or
attributes and are extracted from measured observations or ex-
amples. In the radiomics context, these may include texture
features and shape descriptors. Correct labels of data samples
(ie, variable ‘‘Y’’) are referred to as the ground truth and are
bound to empirical outcomes, classes, or events. These may
include clinical endpoints, such as, cancer recurrence, death,
or measures of drug resistance. Ground truths may also be tis-
sue classifications, such as, benign vs. malignant types.
Ground truth labels are also known as ‘‘gold-standard’’ classi-
fiers and often require manual evaluation or input from hu-
man (expert) counterparts.

An important distinction exists between supervised learning
and unsupervised learning in the context of the algorithm. Su-
pervised machine learning involves presenting the
d techniques, followed by selecting the region of interest (segmentation). Im-

st step involves analysis, which uses artificial intelligence for modelling.

d Radiation Sciences 50 (2019) S32-S41



classification labels of the data samples to the learning algo-
rithm upfront. This approach is useful for post hoc analysis,
where the algorithm-learning from the data develops models
related to the measured target or outcome. In contrast, unsu-
pervised machine learning involves mining data samples rep-
resented by a set of features or attributes with no label
presented to the algorithm, for example, a clustering method.
By using clustering algorithms, such as k-means clustering,
distinct clusters (groups) of the data samples can be identified
based on the data distribution and structure and subsequently
applied for classification. Finally, certain data sets may have a
mixture of labels and hidden/unknown labels and these prob-
lems are approached with semi-supervised machine learning
techniques. For training and validation design, obtaining
the appropriate ground truth labels for computational
oncology is still an ongoing challenge. First, many machine
learning algorithms are structured for binary class labels,
whereas clinical endpoints are often structured as ordinal,
continuous, categorical, or descriptive (ie, qualitative) data.
Thus, choosing the appropriate cutoff boundary within
ordinal or continuous data sets remains a significant chal-
Distanceðs1; skÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aðs1Þ1 � aðsk Þ1

�2

þ
�
aðs1Þ2 � aðsk Þ2

�2

þ.
�
aðs1Þn � aðsk Þn

�2
r

ð1Þ
lenge. Second, there is still no consensus about choosing the
appropriate clinical endpoint standard in many applications.
For example, in locally advanced breast cancer, response to
neoadjuvant chemotherapy (NAC) may be evaluated using a
plethora of pathological assessment guidelines including
Miller-Payne, Chevalier, synoptic pathology, Residual Cancer
Burden Index, or using the American Joint Committee of
Cancer Criteria (AJCC) [10]. Finally, it is important to
note that some clinical variables are important for outcome
prediction. For breast cancer, tumor size, nodal status, and re-
sidual cancer burden are predictors of survival outcomes. In
addition, recurrence patterns and survival rates are highly
dependent on breast cancer subtypes; for example, estrogen
receptor (ER)–positive/HER2-negative breast cancer typically
demonstrates a long metastasis latency period compared with
triple-negative breast cancer [11].

Taken together, AI and machine learning algorithms
should be chosen carefully, based on the data type and
outcome measures. Here, we describe commonly utilized ma-
chine learning classifiers applicable to oncology.
Machine Learning Classifiers

k-Nearest Neighbor

The k-nearest neighbor (k-NN) classifier is a nonpara-
metric algorithm used for classification. It is considered to
be one of the least computationally demanding algorithms
for supervised machine-learning. The k-NN algorithm makes
no assumptions about the form of the data distribution (eg,
W.T. Tran et al./Journal of Medical Imaging an
Gaussian distribution), and therefore, it is ideal for explor-
atory studies where there is no prior knowledge about the attri-
butes and distribution of the data [12]. The k-NN
classification uses a weighting function that varies in value
based on the distance between a sample and its neighbor(s)
(k ¼ number of nearest neighbor(s) considered), seeking
out patterns in the distribution of the data within a sample
set [12]. The data samples (known as ‘‘instances’’) are treated
in groups or ‘‘bags’’ with a defined label [2]. The bags are then
analysed in terms of their attributes or features (Figure 2).

The k-NN algorithm first organizes the bags of training
samples into a feature space based on the values of the attri-
butes. The test samples are assigned a label according to a ma-
jority vote that is dependent on the nearest neighbor as
determined by the Euclidean distance calculation (Eq. 1,
Figure 2).

A Euclidean distance between two samples, s1 and sk, is
defined as follow: where ðaðsÞn Þ represents the attribute n of
the sample s. Because different attributes may have varying
scales or units of measure, data are often normalized between
0 and 1 for analysis within the k-NN feature space.
Na€ıve Bayes Classifier

Na€ıve Bayes classification can be used to predict the prob-
ability of a binary class membership. The algorithm uses the
probabilities of the class label and its attributes to compute
a probability prediction of a sample. An important assump-
tion for na€ıve Bayes classification algorithms is that the indi-
vidual attributes (a1, a2, . an) of a class are independent to
each other (conditional independence) [13]. The na€ıve Bayes
classifier function is expressed as follows (Eq. 2):

PðX jCiÞ ¼
Yn

ðk¼1Þ½PðxkjCiÞ� ð2Þ

where P(XjCi) is the probability of sample (X) labelled into a
class (Ci), and xk represents the value of attribute ak for the
sample X [13].

Support Vector Machine Classifiers

Support vector machines (SVMs) are used to solve classifi-
cation problems based on pattern recognition from sample
features. There are four main elements in an SVM classifier:
(1) a separating line or hyperplane within a feature space,
(2) a margin, (3) support vectors, and sometimes (4) a kernel
function (Figure 3). The hyperplane serves as a decision
boundary between the two classes, with a maximum margin
calculated for optimal discrimination. The hyperplane is rep-
resented as follows [14]:

w!$ x!þ b ¼ 0 ð3Þ
d Radiation Sciences 50 (2019) S32-S41 S35



Figure 2. The k-nearest neighbor (k-NN) classifiers: An example of predicting response vs. nonresponse to a drug agent. The k is three in this representation. The

bags are labelled as responders (green) or nonresponders (red) in the training set (A). A test sample is used to find the three nearest neighbors using a Euclidean

distance calculation. Depending on the labels of the nearest neighbors, a vote is tabulated, and the majority vote determines how the test sample is labelled (B).

Figure 3. Support vector machine learning. The support vector machine com-

prises a separating line or hyperplane in the feature space, as well as a maximal

margin that is determined by the support vectors.Figure adapted from Hearst

et al [14].
where x! is the feature vector, w! is the normal vector to the
hyperplane, and b is the offset of the hyperplane from the
origin. In a normalized feature space, the margin is defined
as the region bounded by the two boundaries expressed by
the following equations [14]:

w!, x!þ b ¼�1 ð4Þ
w!, x!þ b ¼þ1 ð5Þ

The goal is to maximize the margin

�
2

kwk

�
subject to the

following constraints [14]:
For linearly separable data, maximize 2

kwk, such that,

w!, x!þ b � þ1;cx of label ‘‘class 1’’ and w!, x!þ b �
� 1;cx , of label ‘‘class 2.’’

Limitations of the support vector machine learning are
challenges with scalability within the feature space, as well
as the computational burden when there is highly dimen-
sional data (ie, many features to model).

Artificial Neural Networks

The basic framework of neural networks consists of many
neurons (units) that are structured to activate from a threshold
command of another neuron’s weighted input signal. Thus,
the network is composed of several interconnected neurons
that work through structured input/output functions. The
earliest neural network was introduced as a single-layer per-
ceptron, which consisted of only an input layer and an output
layer (the input layer is not considered a network layer) [15].
Subsequently, multilayer neural networks were developed,
defined by the addition of hidden layers to overcome the chal-
lenges of single-layer perceptrons such as inefficient handling
of large, complex, and multidimensional data. The architec-
ture of a neural network is organized as multiple structured
layers with a fixed number of units within each layer
(Figure 4). The hidden layers are tasked with finding attri-
butes associated with the output layer. Concisely, the
S36 W.T. Tran et al./Journal of Medical Imaging an
architecture of neural networks is often predicated by (1) an
input layer, (2) a number of hidden layers, (3) an output
layer, (4) fixed units within each layer, (5) fully connected
units between neighboring layers, (6) neurons within the
same layer that are not connected, and finally in feed-
forward ANNs, (7) the neural connections are unidirectional
[15]. Using a two-layer neural network as an example, we can
express the input vector as follows [15]:
v¼½vi �˛RD ð6Þ
With respect to the output neuron yk , the estimation func-
tion can be expressed as follows [15]:
d Radiation Sciences 50 (2019) S32-S41



Figure 4. Artificial neural networks. The artificial neural networks contain

multiple layers, each with several units (neurons) that work on input/output

functions.
ykðv;qÞ ¼ f ð2Þ
�XM

j¼1

W ð2Þ
kj f

ð1Þ
�XD

i¼1

W ð1Þ
ji vi þ bð1Þj

�

þ bð2Þk

�

ð7Þ

where f ð1Þð,Þ and f ð2Þð,Þ are considered nonlinear activation
functions of units pertaining to the respective layer, and M is
the number of hidden units within the layer [15]. Also, q de-
notes parameter sets (including connections), where q ¼ {W1,
W2, b1, b2} [15].

In the cases where the hidden layers are used to extract fea-
tures (such as in radiomics analysis), then the output layer is
expressed as a linear model [15]:

ykðv;qÞ ¼ f ð2Þ
�XM

j¼1

W ð2Þ
kj fjðvÞ þ bð2Þk

�
ð8Þ

As part of the training process, errors in the learning algo-
rithm can be detected by finding inefficiencies in the param-
eter set, using a back-propagation method.

Feed-forward ANNs are just one approach within a multi-
tude of neural network algorithms. Multilayer neural net-
works encompass a broader domain that include deep
learning methods, which are algorithms that have greater
than two layers. This multilayer architecture can approach
more complex problems [15]. Although describing all the
deep learning models goes well beyond the scope of this re-
view, it is important to mention that other models such as
the deep Boltzmann machine and convolutional neural net-
works (CNNs) are increasingly utilized for radiomic analysis
and machine learning to extract imaging-based features for
modelling.
W.T. Tran et al./Journal of Medical Imaging an
Pathomics: Machine Learning Applications in Breast
Oncology

In contrast to radiomics, which largely employs in vivo im-
aging, pathomics concerns analysis of digital microscopy im-
ages of tissue, cells, and subcellular structures ex vivo.
Pathomics involves preparing whole-slide specimens, applying
conventional microscopy techniques, transferring the whole-
slide specimens into digital formats (ie, digitizing the images),
and performing in silico analysis using AI to relate image fea-
tures (biomarkers) to diagnosis, treatment, and clinical end-
points. There are immense opportunities for pathomics in
oncology, primarily, because conventional (manual) pathol-
ogy reporting already plays a critical role in the clinic. For
example, the mitotic count, nuclear pleomorphism, and tu-
bule formation are used to calculate the Nottingham tumor
grade in breast cancer, which relays information about the tu-
mor’s aggressiveness. The tumor grade is also associated with
clinical endpoints (eg, tumor recurrence), and this plays a role
in clinical decision-making in breast radiation and medical
oncology [16,17]. Another pathology-based analysis is tumor
cellularity, which is correlated to survival endpoints after
NAC for breast cancer [11]. Highly clustered nuclei are asso-
ciated with dense cellular areas, and aberrant nuclear
morphology. These characteristics are associated with malig-
nancies that are distinct from normal or benign tissue. The
driving factors that cause morphological and spatial differ-
ences in tumor cells are attributed to abnormal cell function
and increased cell proliferation [18]. Within this framework,
pathomic studies aim to develop computational methods to
characterize and automate the detection of conventional attri-
butes such as histomorphology (ie, nuclear shape, size, and co-
lor) and tissue-spatial characteristics such as cellular
distribution. Pathomics also aims to extract handcrafted or
data-driven attributes (ie, biomarkers) to be used for cancer
diagnosis and clinical decision-making. The benefits include
higher efficiency, greater standardization for pathologists
and clinicians, and discovery of previously unknown predic-
tive and prognostic biomarkers.

Substantial research has focused on AI for automated anal-
ysis of digital whole-slide specimens. One promising research
avenue is deep learning algorithms that will match the diag-
nostic performance of manual inspection by the pathologist.
Wang et al (2014) [19] developed a computerized system to
quantitate mitotic activity from high-power field (400�) dig-
ital pathology images. Their group used a CNN architecture
consisting of three layers: two sequential convolutional and
sequential layers and then an output layer consisting of two
neurons reflecting binary classes (mitosis vs. nonmitosis)
[19]. The classification accuracy of the CNNs was evaluated
using the following performance measures: (1) recall (sensi-
tivity), (2) precision, and (3) the F-measure. The results
demonstrated that modelling handcrafted and CNN-based
features demonstrated high classification accuracy (F-measure
¼ 0.734) [19]. Other research groups have explored using
machine learning to determine tumor grade. Petushi et al
d Radiation Sciences 50 (2019) S32-S41 S37



(2004) [20] developed an automated analysis pipeline consist-
ing of (1) grayscale conversion, (2) threshold segmentation,
(3) object (nuclei, extracellular matrix, adipose tissue) label-
ling, (4) feature extraction, and finally, (5) object classification
using supervised machine learning. The machine learning
classifiers that were tested consisted of probability-density
functions (eg, linear discriminant functions, gaussian, or
gaussian mixture), neural network posterior-probability classi-
fiers (eg, multilayer perceptrons), and boundary-forming clas-
sifiers (eg, k-nearest neighbor, decision tree). Data comprised
handcrafted (input) features using high-order texture parame-
ters and feature vectors based on the distance between neigh-
boring nuclei. The results of the study showed that the
quadratic classifiers had the least classification errors (error
¼ 0.304), when compared with ground truths, suggesting
the potential to achieve concordance between machine-
classified and pathologist-reported tumor grades [20]. More
recent research is addressing common challenges of whole-
slide preparation, such as overlapping tumor cells that can
erroneously train the learning algorithms; for example, detec-
tion of two distinct cells with overlapping nuclei, but classifi-
cation as one cell undergoing mitosis [21]. Researchers from
Chongqing University (China) approached this problem by
using a curvature scale space corner detection method to
‘‘split’’ the overlapped cells to improve detection and classifi-
cation. The feature-set that was used for classification
included shape-based features (n ¼ 4) and grey-level compo-
nents of multiple color spaces to attain texture features (n ¼
138) [21]. Their study demonstrated excellent classification
accuracies using a SVM classifier, which was able to distin-
guish normal from malignant areas (accuracy ¼ 96.19% �
0.31%) [21].

Computer vision for pathological analysis plays an impor-
tant role in detecting the relevant areas (ie, tumor location)
from whole-slide specimens. Following this, it is possible to
generate predictive or prognostic assays by applying tradi-
tional statistical frameworks (eg, Cox regression models) or
machine learning classifiers of the digital pathology features
to find associations to ground truth labels (eg, clinical and sur-
vival endpoints, or tissue-type classification). The Cambridge
group has recently reported results using digitized pre-
treatment tumor biopsies and post-treatment surgical speci-
mens obtained from the ARTemis trial [22] and from the
Neo-tAnGo trial [23]. The primary aim of those studies
was to investigate pathomic markers of NAC response in
breast cancer, which included 1,223 baseline samples. Ma-
chine learning algorithms using a k-NN and support vector
machine learning was used to classify tumor, stroma, and lym-
phocytes of the digitized pathology samples [22,23]. The re-
sults showed that lymphocyte density, as measured in the
pre-treatment biopsy, was an independent predictor of path-
ological complete response (pCR); defined as a complete
disappearance of invasive cancer cells after treatment (odds ra-
tio ¼ 2.92–4.46, P < .001) [22]. Other research from Romo-
Bucheli et al (2016) [24] have used deep neural networks to
identify tubule-nuclei structures from digitized whole-slide
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images (n ¼ 174) of ER-positive breast tumors. For this
study, the deep neural network architecture was structured us-
ing a convolutional neural network, a rectifier linear unit
(ReLu) and a maximum pooling (max pool) operator [24],
and the output layer that consisted of a binary class label
for (�) tubule nuclei. The ratio between tubule nuclei and
the total number of nuclei was indexed as the tubule forma-
tion indicator (TFI). Their algorithm demonstrated modest
classification results, showing an F-score of 0.59 � 0.14
and a precision of 0.72 � 0.12 [24]. The research group’s sec-
ondary aim was to evaluate the association between the TFI
score to the Oncotype DX prognostic risk score. The results
showed that low Oncotype DX scores (when modelled with
the low tumor grade) were associated with a larger TFI (P
< .01). In contrast, a high Oncotype DX score and high tu-
mor grade had a smaller TFI value (P < .01) [24]. The results
of this study suggest that pathomics-based analysis using deep
learning architecture may provide information about breast
cancer prognosis. Such prognostic pathomic markers have
been studied for oropharyngeal cancer [25] and lung cancer
[26–28].

Taken together, the opportunities for AI in oncology are
immense. Machine learning and deep learning applications
are demonstrating promising new assays for predicting treat-
ment response and survival outcomes for high-risk breast
cancer.

Discussion

It is anticipated that clinical support tools generated from
AI will gain widespread adoption at the patient’s bedside and
in the clinicians’ workspace. However, clinicians’ confidence
in computer-assisted medicine and the incorporation of
computational oncology will demand robust validation in
large prospective randomized trials. With the rapid develop-
ment of computer software and hardware, AI will increase
its presence in the diagnostic workup and may enhance treat-
ment strategies, as well as surveillance practices based on the
predicted individualized recurrence risk. Ultimately, there
are immense opportunities for AI to increase efficiency in
the clinical workflow to improve patient care. Here, we
discuss the pertinent opportunities for AI in the clinical man-
agement of breast cancer.
Neoadjuvant Chemotherapy for Breast Cancer
Breast cancer heterogeneity confers a therapeutic challenge.
This is, in part, due to genetic and molecular alterations that
result in variable tumor phenotypes, which ultimately affects
the tumors’ responses to cytotoxic agents. Hundreds of ge-
netic and molecular drivers of breast oncogenesis and progres-
sion have been identified, including genes responsible for
proliferation, cell cycling, invasion, and metastasis [29,30].
Breast cancer intrinsic subtypes (luminal A, luminal B, basal
like, normal like, and HER2-overexpressed) demonstrate var-
iable clinical presentations and therapeutic-response patterns.
The CTNeoBC pooled analysis (2014) showed low pCR rates
d Radiation Sciences 50 (2019) S32-S41



after NAC in women with luminal A breast cancer (7.5%; CI,
6.3%–8.7%), whereas 33.6% (CI, 30.9%–36.4%) of triple-
negative breast cancer patients achieved a pCR [31]. Indeed,
the pCR rates for all subtypes analyzed ranged from 7.5%
to 50.5% [31]. These results underscore the variance in clin-
ical endpoints. Further to this, the German Breast Group has
also shown differences in long-term outcomes to NAC ac-
cording to intrinsic subtype [32]. In their study, women
with luminal B/HER2-negative (P < .013), HER2-positive
(P < .001), and triple-negative (P < .001) breast cancer
[32] who achieved a pCR were shown to survive longer
than women who did not achieve a pCR [32]. On the other
hand, pCR after NAC did not confer a survival advantage
among patients with luminal A breast cancers [32]. Although
these important studies have stratified oncologic risk at a pop-
ulation level, there is still an opportunity to better understand
the individualized risk factors, such that chemotherapy may
be personalized for each patient to (1) improve tumor
response rates and (2) to prolong survival. If an AI-assisted al-
gorithm could reliably predict pCR upfront, before initiation
of NAC, this could allow medical oncologists to personalize
patients’ treatment regimens. AI-assisted strategies could
also include dose-tailoring, allowing clinicians to administer
dose-escalated systemic therapies based on AI-predictive
models.
Radiotherapy Dose De-escalation in Early-Stage, Low-Risk
Breast Cancer
The role of radiation therapy (XRT) following breast
conserving surgery is to eradicate any potential microscopic
tumor deposits remaining in the surgical bed. Prognosis for
early-stage ER-positive/HER2-negative breast cancer is gener-
ally excellent with the 5-year disease-free survival of up to
87% [33]. The National Surgical Adjuvant Breast and Small
Bowel Project B-06 (NSABP B-06) trial demonstrated that
women with tumor-free margins following breast conserving
surgery, who received adjuvant whole-breast XRT, had a
20-year cumulative incidence of recurrence of 14.3%
compared with 39.2% for patients who received surgery alone
(P < .001) [34]. Following this, there was interest in ascer-
taining the role of endocrine therapies alone for locoregional
control. Endocrine therapies such as tamoxifen (TAM) were
studied intensely; for example, the NSABP B-21 trial showed
that TAM þ XRT resulted in a reduction in ipsilateral breast
tumor recurrence (IBTR) compared with TAM alone, for
small (<1 cm) tumors (Hazard ratio ¼ 0.19, P < .0001)
[35]. Similarly, Fyles et al (2000) demonstrated that TAM
þ XRT significantly reduced the five-year IBTR rates in
women older than 50 years and with clinical stage T1-T2 tu-
mors (Hazard ratio ¼ 8.3, P < .001). This study reported a
disease-free survival benefit with XRT added to TAM (P ¼
.004), but there was no overall survival advantage between
groups (P ¼ .83). The CALGB 9343 trial showed omitting
XRT in women >70 years of age, with T1, ERþ, lymph-
node-negative breast cancer increased the rate of locoregional
recurrence by 8% (P < .001) [36]. Likewise, the PRIME II
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trial reported on women >65 years of age, ER-positive,
lymph-node-negative breast cancer that XRT added to hor-
monal therapy reduced the 5-year IBTR rates to 1.3% from
4.1% (P ¼ .0002) [37]. These studies show that better locore-
gional control can be achieved with XRT in a large cohort of
patients with low-risk characteristics. However, it is still un-
clear if, based on the tumor biology, these patients were inher-
ently low risk for IBTR. In essence, these studies have not yet
shown the individualized risk, at the tumor and patient level,
associated with IBTR and invasive disease-free survival. Thus,
there is an opportunity to study if AI-assisted decision support
tools can help determine if dose de-escalated radiotherapy
might be feasible in low-risk breast patients. Dose de-
escalation studies for adjuvant chemotherapy have also shown
promising results using genetic markers, such as the NSABP-
B14 trial that has now progressed into the Oncotype DX–
validated gene assay (Genomic Health Inc, Redwood) [38].
The Oncotype DX assay uses a 21-gene panel to stratify pa-
tients with ER-positive, HER2-negative breast cancer into
low-, intermediate-, and high-risk categories based on distant
recurrence risk. This information has now enhanced the dia-
logue between medical oncologists and patients when discus-
sing the relative benefit and risks of adjuvant chemotherapy to
make more personalized, patient-centered treatment deci-
sions. Similar to the development of Oncotype DX, there
are still immense opportunities within the context of radio-
therapy, to use machine learning to model relative risks asso-
ciated with tumor behaviour, progression, radiotherapy-
response, and locoregional recurrence.
Multi-Omics and Comprehensive AI Modelling
Big data can be retrieved from multi-omics, by combining
information from such disciplines as genomics, transcriptom-
ics, proteomics, metabolomics, radiomics, and pathomics.
Each of these branches hold great promise for understanding
cancer’s aberrant lifecycle; however, together may provide a
more comprehensive, multi-level portrait of the tumor’s
biology. Multi-omics data may also provide better models
to predicting treatment response. Stetson et al (2017) [39]
used multi-omic data to investigate drug response signatures
in several cell lines, including breast cancer. Machine learning
models included using a random forest classifier and SVM.
Their results showed that multi-omic transcriptomic and
genomic markers were predictive of breast cancer response
to taxane chemotherapy [39]. Other studies have explored
cross-modality multi-omics, such as radiogenomics (ie,
combining radiomics and genomics), underscoring the rela-
tionship between genetic alterations and the resulting pheno-
type, ultimately, detected by quantitative imaging [40].
Radiogenomic studies have been intensely focused on quanti-
tative MRI and genomic relationships in recent years, as
quantitative MRI techniques, such as dynamic contrast-
enhanced MRI techniques, and genotyping platforms have
become increasingly sophisticated. A recent study by Saha
et al (2018) [41] studied a large patient cohort (n ¼ 922)
and extracted 529 radiomic features. Genomic data consisted
d Radiation Sciences 50 (2019) S32-S41 S39



of markers for ER, progesterone, HER2, and the proliferative
marker ki67 [41]. The aim of the study was to find associa-
tions between radiomic and genomic markers to classify breast
cancer subtypes. This study showed that radiogenomic
markers can successfully distinguish luminal A breast cancer,
corresponding to area under the curve of 0.697 (CI, 0.647–
0.746; P < .0001) [41].

Taken together, the major challenge for both clinicians and
the health system is to find efficient strategies to tackle prob-
lems that might improve patient outcomes. AI may offer such
informatics-based solutions to mine the data, seek patterns,
and ultimately build models that confer a deeper understand-
ing of breast cancer.
Opportunities for Radiomics in Contexts of Limited
Resources
Access to medical imaging services involves large capital
costs, highly skilled personnel, and infrastructural support.
An important challenge regarding the emergence of radiomics
is the cost of accessing imaging resources (MRI, CT, and PET
scanners), data banks, and the significant time required for al-
lied health professionals, radiologists, and pathologists to
curate images and interpret findings. This challenge is more
relevant in health systems from low- and middle-income
countries. In response, there has been significant effort to
use less-expensive imaging modalities to make access to radio-
mics more affordable and accessible.

Within this framework, various research groups are
exploring the use of quantitative ultrasound (QUS). QUS is
relatively inexpensive compared with MRI, CT, or PET,
and other advantages include system portability and miti-
gating operator and system dependence during image acquisi-
tion and processing. There is current work to validate
QUS-radiomics in the long term, particularly in breast cancer
[42–44]. Novel QUS imaging techniques to attain imaging
biomarkers aim for objective, reproducible, and have the
high potential for AI-driven automation and interpretation.
These attributes can be useful for low- and middle-income
countries that have limited capital and human resources.
The translation and standardization of QUS techniques into
the clinic will benefit from clinical and scientific organizations
such as the Quantitative Imaging Network of the National
Cancer Institute or the Quantitative Imaging Biomarker Alli-
ance of the Radiological Society of North America. The pro-
spective use of well-developed imaging protocols will
homogenize databases and make ultrasound-based radiomics
more reproducible and accessible.

Conclusion

AI and machine learning, including deep learning, are
poised to play an important role in managing cancer diag-
nosis, treatment, and follow-up. Developing such systems
will lead to increasing presence of digital imaging and elec-
tronic medical information systems in oncology clinics. The
shift to these digital platforms will allow immense data sets
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to be created and mined to extract new information that
can be used for clinical decision-making. Challenges include
robust data provenance, optimization, and tuning parameters
for machine learning and deep learning algorithms, standard-
izing imaging acquisition and its parameters, and aligning
ground truth labels with well-defined clinical endpoints.
Taken together, it is expected that exploiting AI in oncology
will be commonplace as technology evolves, with significant
potential for data-driven diagnostic and treatment strategies
for cancer in the future.
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