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ARTICLE OVERVIEW

In this article, Fry et al. provide the first evidence of both

reversible and irreversible non-thermal effects of ultrasound in

nervous tissue. After first introducing physical principles behind

thermal and pressure-related factors in the absence and pres-

ence of cavitation, the article goes on to present two key experi-

ments. First, in the excised crayfish ventral nerve, ultrasound is

shown to initially increase and then suppress the rate of sponta-

neous spiking, which is reversible after ultrasound is turned off.

The recorded temperature rise of 1 �C is of sufficient magnitude

to alter the frequency of discharge, but the reported suppression

is counter to prior reports on the impact of temperature in cray-

fish nervous tissue.1 In a second experiment in frogs, ultrasound

applied to the spinal cord was able to produce permanent hin-

dlimb paralysis. At lower exposures, reversible paralysis was

achievable. In those with permanent paralysis, histological

changes, including changes in motor neuron morphology, were

observed. Through a systematic study varying parameters such

as exposure duration, exposure type (continuous wave or

pulsed), and ambient temperature, and comparing to controlled

heating via a water bath, the authors demonstrate that thermal

effects alone cannot account for the observed tissue effects.

IMPACT OF THE ARTICLE

Although it is now widely accepted that ultrasound induces bio-

effects through both thermal and non-thermal mechanisms, at the time of this study, the field of therapeutic ultrasound was nascent

and the mechanisms of action had not been systematically studied. The 1950s and 1960s brought many investigations into the effects

of high intensity focused ultrasound in the brain. While there was a strong interest in thermal lesioning with ultrasound, and the Fry

brothers2 and others had successes with these types of exposures in clinical studies, there was also an interest in other effects. It was

in studying the effects of pulsed ultrasound exposures that Bakay et al.3 first observed ultrasound-induced modifications to the blood-

brain barrier, while the Fry brothers4 and others such as Ballantine et al.5 were able to report on reversible changes in evoked poten-

tials in mammalian brain exposed to ultrasound. Visionaries in the field, Fry and Fry saw the immense potential of being able to

non-invasively, and with high spatial precision, selectively induce effects in the brain. However, it would be over half a century before

their pioneering work in thermal and non-thermal effects of ultrasound in nervous tissue would start to reach its potential, as the

technology for focusing ultrasound through the human skull bone did not exist until the end of the century, and early studies relied

on invasive craniotomies that limited their use. Therefore, although investigators continued to study neurostimulation
6

and other

effects of ultrasound in the brain, it was introduction of phased arrays to focus therapeutic ultrasound beams through human skull,

first presented in 1998,7 and the development of noninvasive focusing based on CT derived skull information8 that reignited broad

interest in the field of therapeutic ultrasound use in the brain. Since that time, investigators have been able to build on these early

works from Fry and Fry, with the technology ready to bring their interventions to clinic.

The effect of ultrasound on the frequency of discharge of spontaneously

occurring spikes in the excised crayfish ventral nerve cord. Reprinted

with permission from W. J. Fry et al. Acoust. Soc. Am. 22, 867–876

(1950). Copyright 1950 Acoustical Society of America (Ref. 7).
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CURRENT STATUS

Focused ultrasound use in the brain is now a clinically approved treatment for thermal ablation treating essential
9

and Parkinson’s

tremor,
10

and has reached clinical investigations for non-thermal effects, such a transient modulation of the blood-brain barrier to

enable targeted drug delivery via an cranietomy
11

or through intact skull
12

and neuromodulation.
13

Further, other cavitation based

treatments, such as cloth lysis
14

and histotripsy (complete fractionation of soft tissue by short high pressure pulses)
15

are being devel-

oped for use in the brain. The Fry brothers took the early experiments of Lynn and coworkers
16,17

and with careful extensive experi-

mental and clinical studies established the various ultrasound interactions with the brain and nervous tissues. Based on this work,

they are considered the founding fathers of the field of focused ultrasound, and their legacy is a vibrant research field bringing new,

disruptive technologies to the clinical arena.
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