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Abstract
Transcranial MR-guided focused ultrasound (MRgFUS) is a 
rapidly developing technology in neuroscience for manipu-
lating brain structure and function without open surgery. 
The effectiveness of transcranial MRgFUS for thermoabla-
tion is well established, and the technique is actively em-
ployed worldwide for movement disorders including essen-
tial tremor. A growing number of centers are also investigat-
ing the potential of microbubble-mediated focused 
ultrasound-induced opening of the blood-brain barrier 
(BBB) for targeted drug delivery to the brain. Here, we pro-
vide a technical overview of the principles, clinical workflow, 
and operator considerations of transcranial MRgFUS proce-
dures for both thermoablation and BBB opening.

© 2020 The Author(s) 
Published by S. Karger AG, Basel

Introduction

As of early 2020, over 50 institutions worldwide offer 
transcranial magnetic resonance-guided focused ultra-
sound (MRgFUS) as a less-invasive treatment option for 
thermoablation in the brain and >10 are involved in clin-
ical testing of FUS combined with microbubbles for tar-
geted drug delivery to the central nervous system (CNS) 
[1]. Other applications of FUS in the brain that are cur-
rently under clinical investigation include neuromodula-
tion and ultrasound-assisted clot lysis (i.e., sonothrom-
bolysis) [2, 3]. Owing to the appeal and potential benefits 
of less-invasive surgical techniques, MRgFUS thermoab-
lation has superseded previously developed lesioning ap-
proaches at many institutions, particularly for unilateral 
thalamotomy in the treatment of medication-refractory 
essential tremor (ET) [4–6]. With demonstration of the 
cost-effectiveness of transcranial MRgFUS relative to 
standard surgical treatments for ET, this trend is poised 
to continue for other intracranial ablative indications [7, 
8]. Additionally, low-intensity pulsed FUS and circulat-
ing microbubbles can increase blood-brain barrier (BBB) 
permeability to enable localized drug delivery to the CNS 
and is a burgeoning field of clinical research built on a 
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promising line of preclinical investigations since the ini-
tial feasibility was demonstrated in 2001 [9–15]. If shown 
to be safe and effective in a clinical setting, this technol-
ogy may open opportunities to treat diverse neurological 
conditions for which the BBB is a major impediment to 
therapeutic delivery. Other techniques to bypass the BBB 
exist for enhanced CNS drug delivery. However, some of 
these techniques have shortcomings and risks that limit 
more widespread adoption, such as the heterogeneous 
BBB opening (BBBO) and off-target toxicity associated 
with intra-arterial mannitol [16, 17].

Over the past few years, there has been increasing in-
terest in the use of FUS as a tool for modulating BBB per-
meability in a number of clinical indications, ranging 
from cancer to neurodegenerative disease. This article 
provides an overview of the basic principles of transcra-
nial MRgFUS, the current state of the technology, treat-
ment protocols, and existing limitations. We emphasize 
the methodology and nuances of nonthermal microbub-
ble-mediated FUS procedures (e.g., BBBO) and highlight 
areas of improvement for the treatment team.

State of Technology

The currently available clinical FUS brain devices can 
be stratified into MR-guided (ExAblate Neuro; InSightec, 
Israel), neuronavigation-guided (NaviFUS, Taiwan), and 
implanted (SonoCloud, CarThera, France) systems. Two 
ExAblate Neuro systems are available, and these systems 
share the same peripheral electronics but operate at dif-
ferent frequencies: a high-frequency (650–720 kHz) de-
vice for thermal ablation and a low-frequency (220–230 
kHz) device for nonthermal microbubble-mediated treat-
ments. The high-frequency ExAblate Neuro system is 
currently the only FUS device approved for thermoabla-
tion in the brain. The low-frequency ExAblate Neuro sys-
tem, along with NaviFUS and SonoCloud, is the clinical-
prototype device for FUS and microbubble-mediated 
BBBO. The ExAblate Neuro and NaviFUS systems use 
extracorporeal FUS transducers, whereas the SonoCloud 
device is an unfocused ultrasound transducer that is im-
planted in the skull cavity [18]. Several laboratory FUS 
brain systems exist and are at various stages of develop-
ment and testing [19–21].

This article focuses mainly on the ExAblate Neuro de-
vices, which have been employed for both thermal and 
nonthermal FUS brain treatments, since most of the clin-
ical experience to date has been based on these devices. 
The ExAblate Neuro system consists of a 30-cm diameter 

hemispherical surface (“helmet”) that is lined with 1,024 
independent transducer elements for ultrasound deliv-
ery. The helmet is fixed to a specialized MRI bed and is 
attached to the patient’s head using a stereotactic frame. 
The intervening space is filled with chilled degassed/de-
ionized water, held in place by a rubber membrane fitted 
around the circumference of the head, which provides 
acoustic coupling and enables cooling of the scalp and 
skull during thermoablation procedures. Based on the 
prescribed target location, helmet orientation, skull prop-
erties (estimated from patient-specific CT images), intra-
operative MRI data, and additional user input (e.g., no-
pass zones for intracranial calcifications and water mem-
brane folds), the MRgFUS system calculates the necessary 
amplitude and phase for each individual transducer ele-
ment to focus ultrasound through the skull bone to the 
prescribed target(s) [22]. In general, only a subset of the 
array may be active for a given sonication as elements as-
sociated with no-pass zones or high incident angles are 
disabled [23]. For thermal treatments, the transducer am-
plitude distribution is often set to achieve a uniform 
acoustic intensity density on the outer skull surface [24] 
to minimize skull heating effects [25]. For nonthermal 
treatments, during which skull heating is less of a con-
cern, the transducer amplitude distribution is often set to 
ensure each array element contributes equally to the 
acoustic intensity at the focal spot [24]. As discussed in 
further detail below, intraoperative MRI is carried out to 
provide real-time treatment guidance and dedicated sin-
gle-element acoustic detector monitor for any cavitation 
activity generated during the FUS exposures.

Basic Principles: Thermal versus Nonthermal

A critical responsibility of the treatment team is to pro-
mote efficient propagation or delivery of ultrasound into 
the brain such that the intended biological effect(s) occur 
at the target(s). Propagation of ultrasound into a medium 
is dictated by the acoustic impedance, which is related to 
the material density and sound speed. In passing through 
the skull, ultrasound is reflected, attenuated, and trans-
mitted. At the interface separating 2 distinct media, a 
higher mismatch in acoustic impedance (e.g., from scalp 
to bone) results in increased reflected energy and conse-
quently decreased ultrasound transmission (Fig. 1). Tem-
perature elevation is the primary result of attenuation in 
the skull bone. Attenuation varies as ultrasound pene-
trates through different tissue, indicated by an attenua-
tion coefficient of 13.0 dB/cm for the skull and 0.6 dB/cm 
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for the brain at 1 MHz [26]. For comparison, a 3-dB de-
crease translates to a 50% reduction in ultrasound inten-
sity. In addition to attenuation, variations in skull thick-
ness introduce aberrations to the ultrasound path, defo-
cusing the ultrasound beam. Overall, ultrasound suffers 
from increased attenuation and distortion with rise in fre-
quency [26].

Using a curved single-element transducer or a multi-
element phased array, focused ultrasound creates a tight 
high-pressure point with a sharp drop off outside the fo-
cus. Phased arrays permit electronic control over the 
beam geometry and direction, as well as provide the abil-
ity to mitigate skull-induced beam distortions, and thus 
provide increased flexibility relative to single-element 
transducers. The size of the focal region can be adjusted 
depending on the transducer design (e.g., geometry) and 
ultrasound parameters (e.g., operating frequency). The 
target brain region should ideally be spatially matched to 
the geometric focus of the transducer. Arrays can be me-
chanically positioned such that the focus is as close as pos-
sible to the target, after which the focus can be steered 
electronically through phasing within a smaller region. 
The low-frequency ExAblate Neuro system allows soni-
cations within a sphere approximately 4 cm in diameter 
without repositioning the helmet. Overall, the treatment 
envelope is larger for the low-frequency versus high-fre-
quency system, provided the helmet is repositioned to 
place the target within the treatment sphere. For high-

frequency applications, treatment outside of these zones 
is suboptimal because of decreased efficiency of ultra-
sound delivery, increased skull heating, and potential off-
target effects.

Thermal dose is an important concept in understand-
ing FUS thermoablation applications in the brain. The 
biological effects resulting from thermal exposures de-
pend on temperature as well as the exposure duration. 
For this reason, thermal dose was developed as a metric 
to evaluate the extent of tissue damage resulting from 
thermal exposures [27]. For a given exposure, thermal 
dose can be interpreted as the number of cumulative min-
utes at 43°C that would be required to achieve an equiva-
lent biological effect. With 43°C chosen empirically from 
in vitro experiments, for every additional degree of tem-
perature elevation, the time required for coagulative ne-
crosis decreases by 50% [28]. In general, each target tissue 
has a different sensitivity to thermal dose though 240 cu-
mulative equivalent minutes at 43°C (CEM43) appears 
sufficient to induce necrosis in all tissue types [29]. Data 
from MRgFUS thalamotomy procedures suggest the dose 
threshold is lower (∼100 CEM43) in the human thalamus 
[30, 31]. The bioheat transfer equation is often used to 
model heat transfer and was formulated by Dr. Harry 
Pennes [32], a psychiatrist in New York City, through ex-
periments in the human forearm. Dr. Pennes introduced 
the importance of convective heat loss through perfusion 
as well as diffusion to surrounding structures, which ex-

Incident
Reflected

Transmitted

650 kHz (T = 60°C)
650 kHz (T = 52°C)
220 kHz (T = 60°C)

Skull
absorption

Fig. 1. Left: ultrasound is reflected, attenuated (absorbed and con-
verted into heat), and transmitted as it passes through the skull. 
Reflections and attenuation within the bone contribute to reduced 
levels of transmission at the intracranial target, and variations in 
skull morphology (e.g., thickness) and material properties act to 
defocus the ultrasound beam. Right: treatment envelopes for a 

fixed peak focal temperature obtainable via existing hemispherical 
MRgFUS brain systems with different operating frequencies, 
adapted from 2013 Focused Ultrasound Foundation Brain Mini 
Workshop on Treatment Envelope Expansion [88]. MRgFUS, 
transcranial MR-guided focused ultrasound.
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plains how large Virchow-Robin spaces, ventricular 
structures, and large-caliber blood vessels might act as 
heat sinks.

Cavitation refers to the interaction of acoustic waves 
with gas- or vapor-filled cavities. Preformed microbub-
bles are injected intravenously to facilitate stable cavita-
tion necessary to open the BBB [33] and are available as 
ultrasound contrast agents. With stable or noninertial 
cavitation, bubbles oscillate, resulting in mechanical 
forces on the vessel wall thought to be mainly respon-
sible for altering the structural and functional compo-
nents of the BBB (e.g., occludin and ZO-1, caveolae, and 
P-glycoprotein). The safe and effective BBBO in nearly 
every brain region has been studied in animal models 
and reviewed in depth previously [34]. The extent of 
BBBO is dependent on a number of factors: ultrasound 
parameters (e.g., peak negative pressure, burst length, 
burst repetition frequency, and exposure duration), mi-
crobubble dose (e.g., concentration, size distribution, 
and circulation time), and intrinsic tissue properties 
(e.g., vascular density). One commonly used commer-
cial ultrasound contrast agent is Definity® (Lantheus 
Medical Imaging), which are inert gas perflutren-con-
taining lipid microspheres with a main size distribution 
of 1.1–3.3 μm and a half-life of in vivo approximately 
1.3 min. Capillaries in the brain have a diameter be-
tween approximately 6 and 10 μm [35]. Such micro-
spheres have similar rheology as red blood cells. There-
fore, differences in vessel properties, like vascular den-
sity and fragility, can alter the result of BBBO. In 
summary, the therapeutic FUS can be classified by fre-
quency, intensity, and addition of microbubbles, with 
different applications dependent on the dominant bio-
logic effect (Table 1).

Principles of Optimal Treatment

There are several modifiable factors to increase patient 
tolerability and overall treatment success. The overarch-
ing goal is to minimize acoustic attenuation in the near 
field – between the transducer and the target – and max-
imize energy deposition at the intended focus. These fac-
tors will be discussed in chronological order of the clinical 
workflow (Fig. 2).

Patient Selection

General
Patients must meet disease-specific criteria for the 

MRgFUS. Medical contraindications for MRgFUS proce-
dures include uncorrected coagulopathy and the Ameri-
can Society of Anesthesiologists physical status classifica-
tion 4 or higher. Presurgical anesthetic assessments are 
arranged for all patients. In addition, patients should be 
made aware during the consent process of the need for a 
full head shave and placement of a stereotactic frame. Pa-
tients with mild-to-moderate claustrophobia may still be 
able to tolerate MRgFUS procedures on a case-by-case 
basis. Coagulopathies should be corrected such that the 
international normalized ratio is <1.2. Platelet count 
should also be above 100,000/μL. Patients on anticoagula-
tion or antiplatelet therapies can be asked to hold these 
medications for the procedures if the associated risks are 
low.

Thermoablation
Skull morphology characteristics are important deter-

minants of temperature rise during thermal MRgFUS 

Table 1. Types of therapeutic focused ultrasound classified by ultrasound frequency, intensity, and use of 
microbubbles

Frequency Intensity

low high

Low ◆ BBBO with microbubbles [44]
◆ Neuromodulation [42, 58]

⚫ Ablation [85]

High ⚫ Neuromodulation [16] ◼ Thermoablation, for example, MRgFUS 
thalamotomy [21]
⚫ Histotripsy mechanical ablation [76]

⚫, preclinical; ◆, clinical trials; ◼, regulatory clinical approval; MRgFUS, transcranial MR-guided focused 
ultrasound; BBBO, blood-brain barrier opening.
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brain treatments. The skull density ratio (SDR) is one 
such metric calculated by the ExAblate Neuro systems. 
SDR is calculated based on patient-specific CT scans of 
the head, specifically the ratio between the Hounsfield in-
tensity of the trabecular and cortical bone layers averaged 
across the trajectories between the target and each active 
element in the transducer array [36]. Thus, SDR is not a 
fixed value for each individual and depends on the ana-
tomical location of the target as well as the number of 
transducers for which an unobstructed path to the target 
exists. To ensure proper estimation of SDR using existing 
transcranial MRgFUS systems, helical CT should be ac-
quired covering the entire head with a slice thickness of  
1 mm or less, reconstructed with the appropriate convo-
lution kernel depending on the CT brand (e.g., bone plus 
kernel for GE) and with no gantry tilt.

Patients with low SDR values are generally associated 
with low sonication efficiencies in lesional applications 
(i.e., ratio of focal temperature elevation to the applied 
acoustic energy) that limit the achievable focal tempera-

tures and can preclude lesion formation. Intracranial cal-
cifications, scalp lesions, and hyperostosis frontalis im-
pair ultrasound transmission and have a higher propen-
sity to heat. The presence of these characteristics is relative 
contraindication for thermoablation. These regions, 
along with sensitive neurovascular structures, can be 
blocked as “no-pass zones” using the MRgFUS system 
software, which turns off the number of active transducer 
elements to minimize energy deposition in these regions. 
Numerical simulations of transskull ultrasound propaga-
tion may provide the opportunity to investigate treat-
ment feasibility preoperatively [37–39].

The proportion of patients unsuitable for MRgFUS 
thermoablation depends on a number of factors and 
changes in this quickly advancing field. Patients with SDR 
below 0.30 and or hyperostosis frontalis will be cautioned 
regarding the higher risk of lesioning failure but are not 
absolute excluded during the screening process. Indeed, 
some institutions exclude patients from MRgFUS ther-
moablation procedures based on SDR (e.g., SDR <0.40–

IV access

Pre-procedure
common to

thermoablation
and BBB opening

Padding, warming,
compression stockings,
filling the helmet with

degassed water

Post-procedure
common to

thermoablation
and BBB opening

Anesthesia check

Hair shave

Head frame and rubber
diaphragm placement

Positioning on 
treatment table

Planning scans

Target selection

Helmet positioning

Sub-ablative
sonications

MR thermometry

Target correction

Drug administration

High power
sonications

MR thermometry

Physical exam

Sonications

Definity injection

Acoustic monitoring

MRI (e.g. T2*, T1)

Cooling

Warming

T2-weighted MRI

Target correction

Physical exam

T1-weighted + contrast
MRI to assess endpoint

Move to additional
target

Removal from
treatment table

Removal of head
frame

Post procedure MRI

Post procedure exam

Post anesthesia
monitoring

Thermoablation

BBB opening

Fig. 2. Clinical workflow common to all MRgFUS brain treatments 
is depicted in blue (left, right), together with steps specific to ther-
moablation (red, middle top) and BBBO (green, middle bottom) 

procedures. MRgFUS, transcranial MR-guided focused ultra-
sound; BBBO, blood-brain barrier opening; IV, intravenous.
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0.45) [5, 36, 40]. However, recent advancements in tran-
scranial ultrasound focusing capabilities using the clinical 
device have resulted in improved sonication efficiency, 
which may ultimately increase the proportion of patients 
that are “treatable” via MRgFUS as well as enable success-
ful lesioning in previously failed patients [41].

BBB Opening
A patient might be excluded from participation in FUS 

BBBO procedures for a variety of study criteria including 
disease-specific scores, contraindications to delivered 
therapies, MRI, MRI contrast, and ultrasound contrast 
agent (e.g., Definity®). Specifically, contraindications to 
the latter include right-to-left shunts and severe cardio-
pulmonary disease among others that can be found in the 
product monograph.

For nonthermal microbubble-mediated MRgFUS 
procedures, skull properties are less critical for patient 
selection. First, the lower array operating frequency re-
duces the impact of skull-induced beam distortions [42]. 

Second, because the time-averaged acoustic powers re-
quired for microbubble-mediated BBB permeabilization 
are several orders of magnitude lower than those required 
for thermoablation [11, 12], the applied acoustic power 
can be increased until an appropriate level of cavitation 
activity is induced at the desired target without risk of 
skull heating. Patient tolerability of prolonged MRI ses-
sions remains an important consideration. However, 
during nonthermal procedures, symptom feedback is less 
critical for treatment guidance, and thus patients can be 
more deeply sedated with careful selection of anesthetic 
agents.

Patient Preparation

Patient preparation for both thermal and nonthermal 
MRgFUS procedures follows similar protocols. Of im-
portance is a meticulously clean shave to avoid air bub-
bles trapped in the hair [43]. Shaving cream may be used 

Replacement IV
fluids and/or
anethesia

To patient

Ultrasound
contrast agent
bolus or infusion

CRW frame

ExAblate device
helmet
CRW frame post

Circulating cooled
degassed water

Ultrasound transducer
surface

Attachment of CRW
frame to the MRI
table

Representative target

Fig. 3. Top: illustration of the current 
ExAblate clinical MRgFUS system. The 
CRW frame is typically positioned as infe-
riorly as possible to maximize the cranial 
surface area that is exposed to the transduc-
ers. Bottom: diagram illustrating the injec-
tion port for microbubbles in BBBO appli-
cations. MRgFUS, transcranial MR-guided 
focused ultrasound; CRW, Cosman-Rob-
erts-Wells; BBBO, blood-brain barrier 
opening; IV, intravenous.
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to reduce skin irritation after procedure, but should be 
entirely wiped away prior to patient setup. During the as-
semblage of the MR compatible Cosman-Roberts-Wells 
(CRW) stereotactic frame (Integra®; UCHRA), attention 
should be paid to correct placement of the numbered 
posts. In general, placement of the stereotactic frame can 
be placed under local anesthetic only, and wherever pos-
sible, intravenous (IV) adjuncts should be avoided due to 
side effects like nausea and oversedation. Furthermore, 
the frame should be positioned as inferiorly as possible on 
the head to maximize the number of active transducer 
elements (Fig. 3).

In placing the frame, we generally start with the front 
2 head ring screws advanced 3/4 of the way in, in an at-
tempt to avoid the temporalis muscle. We do not use a 
torque wrench when tightening the screws but do admin-
ister 1–2 more turns after they are finger tight. Adequate 
fixation of the head is particularly important for ther-
moablation treatments, both for precise stereotactic tar-
geting and accurate temperature monitoring as the MR 
thermometry is sensitive to motion.

Attention should be given to the location of the target. 
Ideally, the target is placed as close to the transducer ar-
ray’s geometric focus as possible. The helmet can be 
translated and rotated mechanically with respect to the 
patient’s head; however, when extreme targets are at-
tempted, the range of motion can be limited physically by 
the stereotactic frame or MRI table. For cerebellar targets, 
for instance, the frame should be placed as inferior as pos-
sible. Shorter MR-compatible disposable head ring screws 
(Integra®; DHRSS5) can be used when a significant hel-
met tilt is necessary to provide maximal clearance, pro-
vided the subject head size permits. Finally, expanders or 
“ear” adapters are available to offset the frame even more 
from the helmet. A final check of any hyperflexion or hy-
perextension of the neck when the frame is parallel to the 
floor is important, particularly for patients with pre-ex-
isting cervical spine disease.

Intraoperative

Thermoablation
The clinical protocol for MRgFUS thermoablation and 

lesion prediction has been described previously [44–46]. 
Accurate location of the temperature elevation on axial 
and sagittal MR thermometry with sublesional sonica-
tions is required. MRI monitoring during sonications is 
an important feature of MRgFUS. Planning scans are ac-
quired as described previously. Intraoperative thermom-

etry is critical both for spatial accuracy and estimation of 
accumulated thermal dose, relevant to guiding treatment 
endpoints [30, 31]. Targeting accuracy of the thermal le-
sion can be tested with online MR thermometry in 3 ori-
entations during subablative temperature sonications. 
Subsequent corrections can be made depending on the 
orientation and discrepancy if needed. In the MR ther-
mometry employed by the ExAblate Neuro system, tem-
perature changes are measured based on phase differenc-
es between dynamic frames in a single 2D plane. These 
differences are linearly related to temperature change in 
relevant ranges but are sensitive to motion. T2-weighted 
imaging is also helpful with regard to guiding treatment 
for instance to confirm lesion formation and assess size 
and location [47].

Bouts lasting 40–50 s of sequentially higher-power 
FUS in the range of 500–900 W are then delivered alter-
nating with clinical examinations. Clinical examinations 
assess for treatment effects and adverse events that might 
advise spatial adjustment of the target. In general, we aim 
for 2–3 bouts of temperature elevation above 54°C. A T2 
sequence is performed after a group of sonications be-
tween 50 and 57°C or when the patient experiences good 
clinical improvement to assess treatment endpoint. We 
aim for a lesion measuring 4–5 mm in diameter on the 
intraoperative T2-weighted sequence. The lesion size 1 
day after the procedure is expected to expand by 1–2 mm. 
Lesion size can be predicted by the accumulated thermal 
dose model, which accounts for additional factors such as 
heat diffusion to adjacent tissue and oblique focus [30, 31, 
48].

Overall, the total time on the MRgFUS system for ther-
moablation ranges from 2 to 3 h. In terms of anesthesia, 
sedation and analgesia are critically important during 
thermal FUS procedures for scalp heating and pain [49]. 
Scalp pain from high-power FUS is transient and does not 
typically require further treatment postoperatively. Acet-
aminophen is a typically effective analgesic for mild post-
operative pain associated with cold water or stereotactic 
frame. A few hours of observation and supportive care is 
typically sufficient prior to patient being ready for dis-
charge.

BBB Opening
For BBBO procedures, a three-way stopcock is added 

on the IV line such that it is accessible for the ultrasound 
contrast agent injections while the patient is in the MRI 
bore (Fig. 3). Microbubble contrast agent administration 
can be carried out using repeated boluses or using a con-
tinuous infusion. For bolus administrations of Definity® 
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as an example, a 4 μL/kg dose is injected 30–40 s prior to 
the start of sonication followed by a 5- to 10-cc saline 
flush enough to clear the microbubbles from the IV line 
[33]. The half-life of Definity® is 1.3 min, allowing ap-
proximately 5 min of effective sonication, and must there-
fore be redosed every 5 min. While the maximum indi-
cated dose of Definity® for diagnostic imaging is 20 μL/
kg, up to 100 μL/kg has been tested in initial clinical safe-
ty testing. Early MRgFUS trials adhered to 20 μL/kg, 
which was expanded following accumulation of safety 
data. For infusion administrations, 1.3 cc of Definity® is 
mixed into a 500-cc preservative-free saline bag and in-
fused at 10 cc/min. Infusion allows this aspect of the pro-
cedure to be operator independent and allows continuous 
sonications, saving time and frequent interactions with 
the IV line. The potential disadvantages of infusion in-
clude settling of microbubbles over time, agent waste, and 
a lower temporal-peak microbubble concentration com-
pared to bolus administrations. Finally, administration of 
O2 has been shown to reduce the effectiveness of BBBO 

in animals [50], potentially due to decreased concentra-
tion of microbubbles in cerebral circulation from vaso-
constriction [51]. Therefore, ideally, patients are removed 
of supplementary oxygen during sonications if safe to do 
so.

Because microbubble-mediated FUS applications are 
affected by the concentration and size distribution of mi-
crobubbles, operators should also be well versed with ap-
propriate handling of Definity® and other similar ultra-
sound contrast agents [52]. Definity® is stored long term 
at 2–8°C and does not contain bacterial preservative. The 
vial should be allowed to reach room temperature (∼20 
min) prior to activation, as activation temperature has 
been found to affect the resulting size distribution [53]. 
Activation involves mixing in the VIALMIX® apparatus 
(Lantheus Medical Imaging) for 45 s immediately before 
use, whereby the liquid turns from clear to milky. The 
microbubbles settle with time, so should be resuspended 
with repeated inversions of the vial or syringe for 10 s. 
Only 18- to 20-G needles should be used to draw up the 
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for MRgFUS BBBO procedures. The current ExAblate system soft-
ware provides freehand or polygon tools for creation of the TV and 
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(top middle). Every spot within the target receives the same trans-
mitted ultrasound power, but the resultant cavitation dose can be 
heterogeneous. The cavitation dose data are measured by acoustic 

emissions and can be visually represented at the treatment console 
spatially or over time (top right). Bottom: contrast-enhanced T1-
weighted and FLAIR sequences are useful in assessing FUS-in-
duced bioeffects during BBBO procedures. Other sequences in-
cluding T2* GRE and DWI collectively help evaluate adverse 
events such as bleeding and ischemia. MRgFUS, transcranial MR-
guided focused ultrasound; BBBO, blood-brain barrier opening; 
TV, treatment volume; FLAIR, fluid-attenuated inversion recov-
ery; GRE, gradient echo; DWI, diffusion weighted imaging.
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Definity®, without injecting air into the vial. Previous 
work has shown rapid injection with small needles can 
damage the microbubbles, resulting in considerable dif-
ferences in concentration and size distribution [54].

During planning stages, target regions are hand drawn 
over the planning MRI. For BBBO, polygon tools can be 
used to place a treatment volume (TV) with spacing of 
sonication spots predefined (Fig. 4). Smaller grid spacings 
(e.g., 2.5 mm) are preferred for more homogeneous BBBO 
and smaller anatomic structures. Each subspot has a focal 
depth of approximately 7 mm, which is about the full 
width at half maximum along the 230-kHz ultrasound 
beam [19].

Each TV consists of 1 bout of sonication and estimates 
the overall cavitation dose delivered. The maximum 
number of spots for TV – approximately 30 – takes into 
account the distance between spots and ultrasound pa-
rameters (e.g., duty cycle and repetition frequency) that 
are permissible via electronic steering of the transducers. 
However, larger volumes or more spots often result in 
greater heterogeneity of cavitation dose, and any spot in 
the TV may terminate the sonication if a dose threshold 
is reached. Currently, the power is not modulated by spot 
acoustic feedback.

For BBBO, MR thermometry is less useful as previous 
studies have shown macroscopic temperature changes 
are negligible [11, 12]. T2*-weighted gradient echo and 
susceptibility-weighted imaging sequences are useful to 
evaluate for microhemorrhages. Additionally, acoustic 
emission data can be used to predict the induced biologi-
cal effects [55, 56]. T1-weighted MRI after gadolinium 
injection can visualize changes in BBB permeability and 
help determine treatment endpoints. However, once gad-
olinium is administered, it remains in the brain for the 
duration of the procedure. Thus, contrast-enhanced MRI 
lacks fidelity as a continuous measure of the effect of ul-
trasound.

Alternatively, actively controlled FUS exposure using 
acoustic-based monitoring is an emerging strategy to au-
tomate safe and effective procedures [57–59]. The detec-
tion of acoustic signals by passive cavitation detectors 
within the helmet and real-time decomposition into a fre-
quency spectrum can be used to assess characteristics of 
the microbubble activity in situ [60]. Further, the use of 
multielement hemispherical detector arrays allows three-
dimensional spatial localization of the induced micro-
bubble activity within the brain [61], which has been 
demonstrated in several preclinical studies [19, 62]. This 
approach has recently shown utility in predicting FUS 
bioeffect volume distributions [63]. Acoustic emission 

analysis offers high fidelity monitoring of the BBBO pro-
cess, promising to render the procedure safer and more 
efficient and real-time MRI unnecessary. Work is ongo-
ing to predict the quality of BBBO with the cavitation 
dose detected from the calibration of cavitation detectors 
on the current low-intensity MRgFUS clinical prototype.

There is no scalp pain during FUS BBBO procedures, 
rather participants complain of coldness from subroom 
temperature water circulation. Because BBBO proce-
dures may be prolonged depending on the total TV, up to 
4 h within the device, participants are prone to becoming 
anxious or bored due to long periods of immobility. Oth-
er participants develop claustrophobia over repeated pro-
cedures. We find dexmedetomidine infusion to be helpful 
in maintaining patient cooperation and comfort during 
these long procedures. Other anesthetic protocols used 
for awake craniotomies might also be useful. Warming 
blanket or other devices are helpful in improving the tol-
erability of the procedure and postoperative recovery.

Similar to thermoablation, postoperative recovery re-
quirements are minimal. Postoperative physical exams 
are conducted to document adverse events such as those 
related to FUS or the procedure. Patients might require a 
brief period of recovery with supportive care (e.g., non-
opioid analgesia and antiemetics) prior to being ready for 
discharge.

Radiologic Results

In general, structural T1- and T2-weighted sequences 
are acquired to assess size and morphology of lesions. 
These characteristics, along with spatial location, have 
been shown to be correlated with clinical outcomes as 
well as adverse events [64, 65]. Time course of lesion de-
velopment involves expansion of the lesion in the initial 
24 h, stabilization, and potential regression over the 
course of months [66, 67]. Early postoperative suscepti-
bility-weighted imaging has been found to be predictive 
of lesion appearance at 6 months [66].

For BBBO procedures, MRI contrast agent extravasa-
tion on MRI can be used to measure BBB permeability 
and taken as a surrogate for drug delivery [68]. For in-
stance, Gadovist® is approximately 600 Da and does not 
cross the intact BBB. The appearance of enhancement 
within the sonicated target can appear well demarcated, 
such as reported in a group of patients with AD [12], or 
heterogeneous and “fluffy” as found in a group of patients 
with glioblastoma [13], possibly depending on underly-
ing tissue properties (e.g., interstitial pressure, grey vs. 
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white matter, and vascular density). Blood-pool gadolin-
ium-based contrast agents (e.g., gadofosveset) that bind 
to albumin (66 kDa) have been shown to enhance soni-
cated targets following BBBO as well but at substantially 
lower levels than nonblood pool agents [69]. Gadofosve-
set provides lower sensitivity of BBBO but may provide 
greater validity as a surrogate marker for enhanced deliv-
ery of larger molecular drugs.

The presence of MRI contrast agent within the sub-
arachnoid and perivascular spaces appears highly intense 
on fluid-attenuated inversion recovery (FLAIR) sequenc-
es, which also has a differential diagnosis of acute sub-
arachnoid hemorrhage or meningitis [70]. Contrast en-
hancement on FLAIR after BBBO allows visualization of 
gadolinium clearance through glymphatic pathways and 
resolves once BBB permeability is restored [71]. In addi-
tion, T2, T2* gradient echo, and diffusion weighted imag-
ing are useful for assessing adverse events following son-
ications, such as swelling, bleeding, and ischemia. In our 
experience, post-BBBO T2* changes tend to resolve on 
follow-up studies the day after the procedure [12]. Func-
tional imaging, diffusion tensor imaging, and arterial spin 
labeling techniques are amongst the array of research MR 
sequences available to further characterize the biological 
effects of FUS-mediated increases in BBB permeability 
[72, 73].

Following MRgFUS procedures, participants are ad-
mitted to the hospital for observation and often can meet 
standard criteria for discharge within a few hours. For 
thermoablation, the follow-up MRI 1 day after treatment 
provides a more accurate assessment of lesion size. A de-
layed clinical assessment here is important given new ad-
verse events. For BBBO cases, MRI evaluation 1 day after 
treatment is useful for assessing restoration of BBB per-
meability and evolution of any signal change on other MR 
sequences.

Challenges and Future Directions

Existing challenges in MRgFUS thermoablation in-
clude expanding the treatment envelope, increasing the 
number of eligible candidates for MRgFUS, streamlining 
the procedure workflow, and incorporating more pa-
tient-centered outcome measures. The treatment enve-
lope refers to the volume of brain tissue within the skull 
cavity that can be targeted and treated successfully. With 
existing MRgFUS technology, sonication efficiency is 
higher for central targets (e.g., thalamotomy) than for pe-
ripheral targets (e.g., capsulotomy) and is higher in some 

patients than others [74]. One approach to improve son-
ication efficiency is to employ transskull ultrasound fo-
cusing based on acoustic measurements collected during 
treatment [75, 76]. A similar approach has been demon-
strated to be successful and safe in patients with ET using 
the high-frequency ExAblate Neuro system [41]. In terms 
of retreatment or bilateral treatments, case series of pa-
tients with obsessive-compulsive disorder and major de-
pressive disorder have demonstrated that bilateral MRg-
FUS capsulotomy is feasible [77, 78]. Clinical testing of 
bilateral staged thalamotomy and subthalamotomy is  
ongoing (NCT04501484, NCT03465761, and NCT-
03964272). Data from early MRgFUS thalamotomy cases 
show sonication efficiency can decrease over time within 
a single session potentially caused by changes in acoustic 
properties of the skull and brain tissue due to heating 
[48]. This limitation will have implication on the feasibil-
ity of bilateral procedures conducted in a single session. 
In recent years, there has also been an increased engage-
ment of the entire health care team in understanding the 
unique implications of this novel technology [49, 79].

The treatment envelope within the brain is substan-
tially expanded for BBBO procedures, allowing, for in-
stance, treatment of the hippocampus and medial tempo-
ral lobe [15]. However, it is still our experience that treat-
ing extreme locations within the skull (e.g., the base of the 
anterior middle fossa, occipital pole, and lateral cerebel-
lum) is more challenging using MRgFUS brain systems. 
This is largely due to the difficulty of placing the stereo-
tactic frame such that the helmet’s geometric center is as 
close as possible to the target. In this regard, a freely mov-
ing FUS array could offer greater flexibility in targeting. 
The development of a frameless system, such as, for ex-
ample, with the NaviFUS system, where targeting is based 
on preoperative MRI, may facilitate this. Furthermore, 
frameless systems are generally better tolerated by pa-
tients and reduce procedure time. However, the greater 
flexibility comes with a tradeoff of a decrease in precision. 
The spatial error of frameless systems is at least 2 times 
greater than frame-based systems [80].

Automation of ultrasound exposure delivery and 
monitoring to accurately predict treatment endpoint 
will enable larger tissue volume to be treated in a short-
er amount of time. Acoustic emission patterns from ul-
trasound-stimulated microbubbles have been shown to 
predict successful BBBO [58, 59, 81]. The same signals 
have been shown to correlate with the level of increase 
in BBB permeability, as measured permeability coeffi-
cient Ktrans from dynamic contrast-enhanced MRI 
[82]. This relationship, however, has yet to be studied in 
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human subjects. Acoustic feedback, compared to feed-
back by contrast-enhanced T1w MRI, offers higher fi-
delity during continuous monitoring since gadolinium 
has a dose limitation and half-life. On the other hand, 
T2* acquisition during sonications can be useful for ear-
ly detection of adverse events. Nevertheless, the signal-
to-noise ratio of intraoperative MRI acquisitions still 
desires improvement. In early clinical MRgFUS BBBO 
studies, intraoperative MR thermometry confirmed that 
focal temperature elevations are negligible during the 
low duty-cycle exposures employed for this application 
[12].

Finally, the practicalities of combining FUS with a 
drug and the effect of FUS on its pharmacokinetic pro-
file still have many unanswered questions. For example, 
what is the optimal time to inject the drug? Dynamic 
microscopy studies in animals show fast and slow leak-
age of intravenously injected tracer after FUS BBBO and 
peak increase in permeability within 5 min of sonica-
tions [83, 84]. Notably, fast leakage appeared to domi-
nate with higher acoustic pressures and larger caliber 
(30–70 μm) vessels [84]. Together, these results suggest 
the drug should ideally reach peak plasma concentration 
during sonications. Will it be feasible to combine FUS to 
therapies with dosing regimen as frequently as weekly? 
By how much does FUS improve the tissue concentra-
tion of a drug and how should the systemic dose be ad-
justed as a result, if at all? Several animal studies have 
looked at this for specific drugs or more generally using 
Ktrans in different tissue including tumor [85, 86]. An-
other approach to addressing this question in vivo is 
through radiopharmaceuticals, which has been investi-
gated in animal models [87]. However, radiopharma-
ceuticals are specific to each drug and costly and time 
consuming to develop.

Conclusion

This review provides an overview of how to optimize 
clinical research protocols for transcranial applications of 
MRgFUS, with an emphasis on microbubble-mediated 
BBBO procedures. Continued understanding of the as-
sociated technical parameters, together with further ad-
vances in MRgFUS technology, will help standardize and 
optimize treatment procedures, as well as expand indica-
tions in the future.
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