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Tumor response to neoadjuvant chemotherapy in patients (n = 30) with locally advanced breast cancer
(LABC) was examined using quantitative ultrasound. Three ultrasound backscatter parameters, the inte-
grated backscatter coefficient (IBC), average scatterer diameter (ASD), and average acoustic concentration
(AAC), were estimated from tumors prior to treatment and at four times during neoadjuvant chemother-
apy treatment (weeks 0, 1, 4, 8, and prior to surgery) and compared to ultimate clinical and pathological
tumor responses. Results demonstrated that among all parameters, AAC was the best indicator of tumor
response early after starting treatment. The AAC parameter increased substantially in treatment-
responding patients as early as one week after treatment initiation, further increased at week 4, and
attained a maximum at week 8. In contrast, the backscatter parameters from non-responders did not
show any changes after treatment initiation. The two patient populations exhibited a statistically signif-
icant difference in changes of AAC (p < 0.001) and ASD (p = 0.023) over all treatment times examined. The
best prediction of treatment response was achieved with the combination of AAC and ASD at week 4 (82%
sensitivity, 100% specificity, and 86% accuracy) of 12–18 weeks of treatment. The survival of patients with
responsive ultrasound parameters was higher than patients with non-responsive ultrasound parameters
(35 ± 11 versus 27 ± 11 months, respectively, p = 0.043). This study demonstrates that ultrasound param-
eters derived from the ultrasound backscattered power spectrum can potentially serve as non-invasive
early measures of clinical tumor response to chemotherapy treatments.

Crown Copyright � 2014 Published by Elsevier B.V. All rights reserved.
1. Introduction

1.1. Locally-advanced breast cancer

One of the most common types of cancer diagnosed in women
is breast cancer (American Cancer Society, 2013). Women with
locally-advanced breast cancer (LABC) have poor long-term sur-
vival rates compared to early stage patients (5 year survival rate
of �55%) (Giordano, 2003). LABC comprises a wide range of clinical
scenarios including T3/T4 disease tumor, includes tumor sized
greater than 5 cm, and disease often involving the skin and chest
wall with extensive axillary lymph node involvement. Standard
therapy for LABC is multimodality treatment. This often starts with
neoadjuvant chemotherapy to permit tumor shrinkage and meta-
static control (typically mastectomy, sometime lumpectomy),
and followed by surgery and then radiation therapy. However,
LABC treatment remains controversial due to uncertainties in the
optimization of treatment methodology (Esteva and Hortobagyi,
2008). Complete pathological response to chemotherapy treatment
predicts good patient survival. Several studies demonstrated the
importance of clinical and pathologic complete response to neoad-
juvant chemotherapy as an indicator of a better outcome (Chollet
et al., 1997; Smith et al., 2002). The early detection of treatment
response of breast tumors is very important in order to be able
to guide cancer therapy decisions based on individual patient
responses (Esteva and Hortobagyi, 2008).

Clinical imaging techniques including mammography, CT, and
magnetic resonance imaging (MRI) have been typically used for
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assessments of patient responses to cancer therapy based on ana-
tomical tumor size measurements, typically months after treat-
ment. However, changes in tumor size with cancer treatment are
often the late cumulative result of early micro-structural changes
in tumor cell morphology due to cell death, which start to take
place within hours to days after treatment initiation. An imaging
modality which can assess significant changes in cell-death related
tumor micro-structure would be advantageous for the early assess-
ment of treatment response and could facilitate the change of inef-
fective treatments early (within days), rather than having a patient
subjected to months of an ineffective treatment.

1.2. Ultrasound imaging of biological tissues

Ultrasonic imaging has seen an increase in its utilization for
diagnostic and therapeutic purposes over the last 50 years. It is
highly sensitive to variations in micro-structural properties of tis-
sues at many size scales. Ultrasound scattering is caused by differ-
ences in density and/or compressibility relative to the surrounding
tissue across the ultrasound wave’s propagation region. Backscat-
tered acoustic signals from biological tissues contain information
about the size, shape, number, and relative acoustic impedance
of scattering regions within the tissues (Feleppa et al., 1997). The
most popular way of displaying backscatter information is B-mode
imaging. This technique uses the envelope of detected ultrasound
echoes from a region of interest to typically create gray-scale
images which display a cross-sectional map of the echo intensity.
However, these images only use a fraction of the information con-
tained in the signal. Several investigators have suggested that the
frequency dependent information in ultrasonic echo signals can
be related to acoustical and structural properties of tissue micro-
structure (Feleppa et al., 1986; Lizzi et al., 1988; Lizzi et al.,
1997a, 1997b). The radio frequency (RF) spectrum of ultrasound
backscatter signals has since been used in various tissue character-
ization applications such as the diagnosis of ocular tumors, exam-
inations of liver and renal tissues, prostate cancer, and studies of
cardiac and vascular abnormalities (Feleppa et al., 1997;
Guimond et al., 2007; Lizzi et al., 1997a, 1997b; Yang et al.,
2007). In most of these studies, spectral parameters were extracted
from ultrasonic backscatter signals and related to specific patho-
logical alternations of the investigated specimens. Those spectral
parameters are mid-band fit, spectral slope, and 0-MHz intercept
which are related to scatterer shape, size and acoustic concentra-
tion (product of number concentration of scatterer and the relative
impedance difference between the scatterer and surrounding tis-
sues) (Lizzi et al., 1988, 1997a, 1997b). These parameters are calcu-
lated from the linear regression analysis of backscatter power
spectrum. More complex parameters are described below.

1.3. Cancer response monitoring using ultrasound

Treatments such as neoadjuvant chemotherapy for LABC
patients can alter the structural and mechanical properties of
tumor tissues. Tumor cell death is characterized often by nuclear
condensation and fragmentation, and also features significant
changes in cell structure and cellular organization. Tumor degener-
ation in response to treatment also exhibits considerable interac-
tions with stromal cells (Schedin et al., 2007). All of these are
expected to alter ultrasonic backscatter. In an in vitro ultrasound
based non-invasive monitoring of epithelial cell death study,
results demonstrated a reasonable correlation of spectral slope
and integrated backscatter coefficient, which were extracted from
ultrasound power spectra, to apoptotic cell death (Brand et al.,
2009). In different cancer therapy response monitoring studies,
high frequency quantitative ultrasound (20–50 MHz) was initially
used to detect changes in tissue microstructure due to a variety
of cancer therapies in vitro, in situ and in vivo (Banihashemi
et al., 2008; Czarnota et al., 1999, 2012; Lee et al., 2012; Vlad
et al., 2009, 2008). Other studies used high frequency quantitative
ultrasound to detect apoptotic cell death in tumors treated with
photodynamic therapy, X-ray radiation, and ultrasonically acti-
vated anti-vascular microbubble treatments in a variety of in vivo
mouse models. Those studies demonstrated up to 16-fold maximal
increases in observed backscatter signal intensity accompanied by
changes in spectral parameters. Recently, in studies of treatment
response monitoring in breast cancer xenograft tumors (Sadeghi-
Naini et al., 2013a) and clinical breast tumors treated with chemo-
therapy (Sadeghi-Naini et al., 2013b) using low-frequency clinical
range (7 MHz) quantitative ultrasound spectral parameters,
responding tumors demonstrated approximately up to a 7 to 12
– fold maximal increase in mid-band fit and 0-MHz intercept and
8 to 9 – fold maximal increases in mid-band fit and 0-MHz inter-
cept after cancer therapy initiation.

1.4. Backscatter parameter estimation for tissue characterization

Acoustic scattering theories for biological tissues assume that
tissues can be modeled as low density of random scatterers
(Oelze and Zachary, 2006; Oelze et al., 2004, 2002). Since there
are a large number of interdependent properties embedded in
backscatter signals, it is difficult to extract estimates of individual
properties accurately without simplifying assumptions. The aver-
age scatterer size and average acoustic concentration which reflect
tissue microstructure observed from microscopic optical histolog-
ical evaluation can be estimated from backscatter signals by
assuming their shape, organization and elastic properties of scat-
terers in the medium (Oelze et al., 2002, 2004). This ultrasonic
backscatter parameter estimation technique has been used to clas-
sify tissue abnormalities compared to normal tissues and to differ-
entiate one tumor type from another. In those studies, several
types of nonlinear frequency-dependent scattering models have
been utilized to describe tissue micro-structure including the
Gaussian, fluid-filled sphere, and spherical-shell models (Feleppa
et al., 1997; Insana and Hall, 1990; Oelze and O’Brien, 2006).
Among them, backscatter parameters estimated using the fluid-
filled sphere model (FFSM) have demonstrated reasonable correla-
tions with tissue micro-structure (Oelze and O’Brien, 2006). The
quantitative ultrasound parameters used in the previous studies
for tissue characterization are listed below in Table 1 with their
proper definition and tissue features which determine the value
of each parameter.

Previously, observational tumor response monitoring studies
have been conducted with retrospective analyses of patient out-
comes in breast cancer patients receiving chemotherapy treat-
ment, using elastography and quantitative ultrasound imaging
techniques (Falou et al., 2013; Sadeghi-Naini et al., 2013b). Specif-
ically, strain ratios and strain differences in elastography, and spec-
tral parameters in quantitative ultrasound have been correlated to
treatment response. In the study here, the integrated backscatter
coefficient and two individual structural properties such as average
scatterer size and average acoustic concentration were determined
from ultrasonic backscatter signals. These are used here for the
first time to monitor micro-structural alternations within tumors
in 30 LABC patients after chemotherapy treatment and to evaluate
whether the patients have been responsive or not to their treat-
ments. The FFSM was used to extract backscatter properties from
breast tumors over a frequency bandwidth of 4.5–9 MHz. The clin-
ical-response –based survival curve, which is determined months
later at the time of surgery has been presented in this study in
order to highlight the importance of treatment with tumor
response in comparison therapy without response, since the lack
of such response can significantly impact patient survival.



Table 1
Quantitative ultrasound parameters with their definition and corresponding tissue features which determine the value of each parameter.

Parameters and definition Corresponding tissue features

Spectral parameters: Derived from the backscatter power spectrum by linear regression analysis over the
frequency bandwidth (Lizzi et al., 1988, 1997a, 1997b)

Mid-band fit (MBF) [dB]: Value of the linear fit at the center frequency Scatterer size, shape, number, organization and their
elastic properties

0-MHz intercept (SI) [ dB]: Extrapolation of linear regression of spectrum at 0 MHz Scatterer size, shape, number, organization and their
elastic properties

Spectral slope (SS) [dB/MHz]: Slope of the linear regression of spectrum over the bandwidth Scatterer size and shape
Backscatter Parameters: Derived from backscatter coefficients by fitting with theoretically derived

backscatter coefficient using a scatterer model over frequency bandwidth (Insana and Hall, 1990)
Integrated backscatter coefficient (IBC) [dB]: Integration of the backscatter coefficient within the

bandwidth of the transducer
Scatterer size (ASD), shape, number, organization and
their elastic properties

Average Scatterer Diameter (ASD) [lm]: Estimated by comparing scatterer model function to that
measured for the sample using a least-squares method

Scatter size may be cell size or cellular ensembles
dependent on the ultrasound wavelength

Average Acoustic concentration (AAC) [dB/cm3]: It is the coefficient of the fitted backscatter coefficient. It is
defined as the product of number concentration of scatterers times the relative impedance difference
between the scatterers and surrounding tissues

Scatterer number density, organization and their elastic
properties
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Associated ultrasonic-backscatter-parameter-based survival curves
have been presented to show the potential of early quantitative
ultrasound in assessing of breast tumor response as linked to
patient survival. The results demonstrate that backscatter parame-
ters extracted from ultrasound data are predictive of ultimate clin-
ical chemotherapy response, as early as 1 week after treatment
initiation. Based on such observation clinicians can potentially cus-
tomize cancer therapies, and thereby change ineffective treatment
within days to weeks of starting therapy, instead of continuing for
several months only to find no patient benefit and be faced with
little or no options for recourse.
2. Materials and methods

2.1. Study protocol and patient characteristics

Thirty LABC patients were examined in this study in accordance
with institutional research ethics guidelines. Before treatment all
patients underwent a core needle biopsy to confirm a cancer diag-
nosis, where the tumor grade and histological subtype were
recorded. In addition MRI scanning of the breast was performed
clinically to determine initial tumor size and disease extent. The
breast tumor was examined by clinicians at each time after treat-
ment and post-treatment MRI scans of the breast were also
acquired immediately before patient surgery to measure any resid-
ual tumor size. Following patients’ operations mastectomy speci-
mens were examined by a board-certified pathologist using
whole-mount 500 � 700 pathology slides digitized using a confocal
scanner (TISSUEscope™, Huron Technologies, Waterloo, ON)
(Clarke et al., 2007). Patient characteristics, tumor properties, as
well as treatments administered are summarized in Table 2. The
patients had an average age of 47 ± 8 years (range: 33–62 years).
The average tumor size was 7.3 ± 3.3 cm (range: 1.9–14 cm).
Among thirty patients, 29 patients had invasive ductal carcinoma
and one had metaplastic carcinoma. Patients were followed clini-
cally after their treatment with a mean follow-up period of
35 ± 10 months (range: 15–50 months) for recurrence-free sur-
vival. Clinical pathological responses of the patients are given in
Table 3. Patients were classified as responders or non-responders
based on their ultimate clinical and pathological response. A
‘‘good’’ response was defined by an over 50% diminishment in
tumor size (compared to pretreatment size) along with reasonable
decreases in tumor cellularity, and a ‘‘poor’’ response was defined
as less than 50% diminishment in tumor size accompanied by no
significant changes in tumor cellularity. Patients (n = 23) were
classified as good responders due to the absence of tumor or
presence of only minimal invasive disease, after neo-adjuvant
chemotherapy. Patients 3, 8, 12, 13, 24, 27 and 28 had a poor
pathological response. Their tumor sizes were minimally changed
compared to their pretreatment size. Patients 2 and 18 were
exceptional cases in that the reduction in tumor size was less
than 50%, however, since the residual tumor cellularity was very
low, these patients were clinically/pathologically classified as
responders.

2.2. Ultrasound data acquisition

Breast tumor ultrasound scanning was directed by an oncolo-
gist. Ultrasonic data were acquired from breast tumor volumes
before treatment, at week 1, 4 and 8 after start of treatment, in
addition to prior to surgery, which typically occurred 12–18 weeks
after last cycle of the treatment. But, same number of patient could
not be maintained over all time points due to the absence of the
patient (compliance with scans and physician appointments). Spe-
cifically, the number of patients examined before treatment, at
weeks 1, 4, 8 after treatment and, prior to surgery were 30 (23
responders and 7 non-responders), 29 (22 responders and 7 non-
responders), 29 (22 responders and 7 non-responders), 26 (20
responders and 6 non-responders), and 20 (15 responders and 5
non-responders), respectively. All ultrasonic breast imaging and
RF data acquisition were performed with a Sonix RP clinical system
operating with L14-5/60 Transducer of center frequency 7 MHz
(Ultrasonix, Vancouver, Canada) and �6 dB bandwidth range from
4.5 to 9 MHz. RF data were sampled at 40 MHz. Each image frame
was stored with 512 RF lines over a 6 cm width and 4–6 cm depth.
Four to seven images planes were acquired at 1 cm intervals across
breast tumors, with the transducer focus set at the midline of the
tumor. Scan focal depths remained consistent for individual
patients throughout the study.

2.3. Backscatter parameter estimations

Backscatter parameters were derived from estimates of the
backscatter coefficient rm(f), which is defined as the differential
scattering cross section per unit solid angle at 180�, per unit vol-
ume. Backscatter coefficients are estimated from a normalized
power spectral density of the ultrasound echo signal using the
equation

rmðf Þ ¼
1:45R2

1

A0Dz
c0

2

� �2 jSmðf ; ZlÞj2

jS0ðf ; ZlÞj2
e�4ðamðf Þ�a0ðf ÞðR1þDz

2 ÞÞ ð1Þ

where f is frequency in MHz, A0 is the area of the transducer
aperture. Sm(f) and S0(f) are the Fourier transform of the sample
and reference echo signals respectively. am and a0 are the sample



Table 2
Patient characteristics.

Patient
No.

Age Menopausal
Status

Pretreatment Tumor Dimension (APxMLxSI)
in cm

Histology Grade ER/
PR

Her-2-
neu

Neoadjuvant treatment

1 55 Postmenopausal 5.4 � 5 � 2.3 ductal I � + FEC + paclitaxel, trastuzumab
2 53 Postmenopausal 7.4 � 7 ductal II + � Epirubicin, docetaxel
3 41 Premenopausal 4 ductal III + + Docetaxel, carboplatin,

trastuzumab
4 50 Premenopausal 4 � 5 ductal III � + AC + docetaxel, trastuzumab
5 33 Premenopausal 3 � 3 ductal I + � AC + paclitaxel
6 33 Premenopausal 5.4 � 5 � 8 ductal N/A + + AC + docetaxel, paclitaxel,

trastuzumab
7 48 Postmenopausal 4.9 � 4.9 � 4.1 and 3.2 � 1.3 � 2.9 ductal II + � AC + docetaxel
8 36 Premenopausal 4.4 � 3.9 � 5.8 ductal II + � AC + paclitaxel
9 40 Premenopausal 4.4 � 3.4 ductal III � � AC + paclitaxel

10 62 Postmenopausal 12 � 14 ductal III � � FEC + docetaxel
11 59 Postmenopausal 6 � 2.3 � 4.3 ductal II � � AC + paclitaxel
12 38 Premenopausal 7.5 � 4.9 � 9.2 ductal II + � AC + paclitaxel
13 53 Postmenopausal 8.4 � 9.4 � 12.7 metaplastic III � � AC + cisplatinum, gemcitabine

platinum
14 50 Premenopausal 13 � 11 ductal III � � AC + paclitaxel
15 49 Premenopausal 7.1 � 5.5 � 8.9 ductal III � + Docetaxel, trastuzumab
16 40 Premenopausal 3 � 2.4 � 3 ductal III + + AC + paclitaxel, trastuzumab
17 56 Postmenopausal 2.4 � 2.7 � 3.2 ductal II � + AC + paclitaxel, trastuzumab
18 47 Premenopausal 5.2 � 4 � 4 ductal II + � FEC + docetaxel
19 52 Postmenopausal 4.1 � 3 � 2.5 ductal II + � AC + docetaxel, paclitaxel
20 44 Premenopausal 9.9 � 4.5 � 9.7 ductal II + + AC + paclitaxel, trastuzumab
21 38 Premenopausal 9 � 6.6 � 6 ductal II + � AC + paclitaxel
22 58 Postmenopausal 1.9 � 1.4 � 1.6 ductal III � � AC + paclitaxel
23 38 Premenopausal 8 � 8 ductal III � + Dose-dense AC + paclitaxel,

trastuzumab
24 47 Premenopausal 8 � 10 ductal II + � Dose-dense AC + paclitaxel
25 57 Postmenopausal 7.9 � 4.1 � 5.5 ductal III � � Dose-dense AC + paclitaxel
26 47 Premenopausal 6.3 � 4.1 � 7.4 ductal N/A � + Dose-dense AC + paclitaxel,

trastuzumab
27 55 Premenopausal 6.6 � 12.8 � 6.8 ductal II + � AC + paclitaxel
28 38 Premenopausal 2.3 � 2.5 � 2.5 and 1.0 � 1.0 � 0.7 ductal III � � AC + paclitaxel
29 59 Postmenopausal 8 � 5.7 � 3 ductal II + + FEC + docetaxel, trastuzumab
30 50 Premenopausal 9 � 7 � 3 ductal II + � AC + paclitaxel

AC, adriamycin and cytoxan; FEC, 5-fluorouracil, epirubicin and cyclophosphamide.

Table 3
Patient pathological response results.

Patient No. Post treatment Tumor
Dimension (APxMLxSI) in cm

Notes Pathological Response

1 N/A Complete pathological response Good
2 7 � 5 � 3 Carcinoma with mucinous features; Very low cellularity Good
3 2.7 � 2.5 � 2.4 Tumor cellularity remains very high Poor
4 N/A Complete pathological response Good
5 1.4 Good response Good
6 N/A Complete pathological response Good
7 1.4 � 1 � 1 Small volume of invasive tumor remaining Good
8 11.4 Extensive residual disease Poor
9 N/A Complete pathological response, with only fibrous tumor bed remaining Good

10 N/A Complete pathological response Good
11 2.6 � 2.5 � 2.5 Good response Good
12 6.5 � 3 � 7.3 Invasive ductal carcinoma remaining Poor
13 All the breast Residual tumor took up all the breast; no response Poor
14 4 Good response Good
15 2 � 1.5 � 1 Complete pathological response, with only in situ disease remaining Good
16 0.2 � 0.2 Complete pathological response, with only in situ disease remaining Good
17 0.2 � 0.2 Very good response Good
18 6.5 Exceedingly low cellularity, thus overall tumor volume is also very low Good
19 1 � 0.7 � 0.6 Complete pathological response, with only in situ disease remaining Good
20 2 � 1 � 1 and 1.6 � 1 � 0.5 Good response, tumor cellularity is low Good
21 2.9 � 2 � 1.5 and 2 � 1.5 � 1 Tumor cellularity is low Good
22 N/A Complete pathological response, with only fibrous tumor bed remaining Good
23 N/A Complete pathological response Good
24 12.5 � 4.5 � 3.5 No definite response Poor
25 N/A No residual invasive carcinoma in the breast, only lymphovascular invasion remaining Good
26 N/A Complete pathological response, only scattered in-situ component remaining Good
27 17 No definite response Poor
28 2.8 � 3.0 � 2.3 and 1.5 � 1.6 � 1.1 No definite response Poor
29 N/A Complete pathological response Good
30 1.2 Small volume of invasive tumor remaining Good
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and reference medium attenuation values, respectively. Dz is the
axial length of the range gated volume, and R1 is the on-axis dis-
tance between the transducer and proximal surface of the gated
volume. c0 is the amplitude reflection coefficient of reference plane
reflector.

However, this equation can only be used to estimate BSC from
power spectrum obtained from single-element transducers. For
clinical ultrasound applications, where linear array transducer
are used, a reference phantom technique was used to account for
clinical system dependencies in backscatter coefficient estimation
(Yao et al., 1990) as shown in Eq. (2). In that technique, the system
dependent effects such as system transfer function, transducer
beam forming, and diffraction artifacts were removed by normaliz-
ing the backscatter power spectra calculated from the tumor
region to the corresponding reference spectra calculated from ref-
erence phantom whose backscatter coefficient (rr) and attenuation
coefficient (ar) were determined using absolute measurement
methods (Madsen et al., 1999). The attenuation of the entire breast
for all patients was estimated to be 1 dB/MHz/cm based on data
reported in literature (Berger et al., 1990; Duric et al., 2005).

rmðf Þ
rrðf Þ

¼ jSmðf Þj2

jSrðf Þj2
e4ðamðf Þ�arðf ÞðR1LþDz

2 ÞÞ ð2Þ

where Sr(f) and rr(f) are the Fourier transform of the reference
phantom echo signals and corresponding backscatter coefficient
respectively. RF Signal analysis and backscatter coefficient estima-
tion was performed off-line using a custom-made MATLAB (Math-
works, Natick, MA, USA) program. This program enabled the
visualization of the RF data similar to a B-mode image and was used
to select a region-of-interest. For the estimation of ultrasound back-
scatter parameters, the ROIs were selected from each image plane
for each tumor sample and averaged for the final analysis. The RF
lines were analyzed using a sliding window algorithm. A Hanning
window function of length 10 times the wavelength of the center
frequency with an 80% overlap between adjacent windows in axial
direction and 60 scan lines laterally was used. The breast tumor
BSC, rm(f) was calculated from their corresponding power spectrum
of the gated RF signal from each ROI as shown in Eq. (2).

First, the integrated backscatter coefficient (IBC) was calculated
by integrating the backscatter coefficient within the bandwidth of
the transducer (Machado and Foster, 2001). It is related to the
micro-structural properties of tumor such as scatterer size, shape,
number and scatterer randomization. Estimates of the average
scatterer properties such as average scatterer diameter (ASD) and
average acoustic concentration (AAC) were calculated by compar-
ing the calculated BSC, rm(f) of the gated RF signal from each ROI
over frequency bandwidth to a theoretically derived backscattered
coefficient, rtheor(f) using a least squares method (Insana and Hall,
1990)

rtheorðf Þ ¼ Cf 4a6
eff nzFðf ; aeff Þ ð3Þ

where constant C = p2/36c4 and c is the speed of sound in the med-
ium, nz is scatterer acoustic concentration and F is the form factor
which describes the backscatter coefficient as a function of fre-
quency. In this study, the FFSM was used with the assumption of
invasive duct carcinoma cells as scatterers and connective tissues
as a surrounding medium to extract backscatter parameters from
breast tumors. The mean square error (MSE) value which indicates
the goodness of fit between measured and a theoretically derived
backscatter coefficient was also calculated. Finally, QUS parametric
images were constructed by superimposing colored pixels, whose
colors were associated with QUS parameter estimate values and
locations associated with the sliding window locations, on the ori-
ginal grey scale B-mode image of the tumor (Insana and Hall, 1990).
2.4. Statistical analysis

Changes in the backscatter parameters values between
responders and non-responders and also within the treatment
time points were compared using analyses of variance (ANOVA)
followed by Bonferroni multicomparison test. Changes in the
backscatter parameter values from baseline between responders
and non-responders at each time point for backscatter parame-
ters were also compared independently. Discriminant analysis
was used to determine which backscatter parameter discrimi-
nated between responders and non-responders at weeks 1, 4,
and 8, and 1 week prior to surgery. The changes in the values
of backscatter parameters were used as predictors in the analy-
sis, which examined the best separation between the two
groups. Sensitivity and specificity were calculated to quantify
the performance of the classification method in terms of dis-
criminating responders from non-responders. Survival rate for
two treatment response populations were created by the
Kaplan–Meier method to clarify the time dependent cumulative
survival rate, and the curves were compared using the log-rank
test. P < 0.05 was considered to determine a statistically signifi-
cant difference.
3. Results

3.1. Backscatter property evaluation of treatment response

Ultrasound B-mode images and backscattered RF data were col-
lected for each patient before and at specified times during treat-
ment. Chemotherapy treatment produced consistent and
reproducible changes in ultrasound images and backscatter param-
eters as a function of time after treatment. Backscatter coefficient
(BSC) changes over the �6 dB bandwidth of the transducer for both
the responder and non-responder cases are shown in Fig. 1a and b
and the IBC parameter was calculated within this bandwidth. The
FFSM was used to extract AAC and ASD parameters from the mea-
sured BSC for each region-of-interest (ROI), which was selected in
the tumor region.

Representative ultrasound B-mode images and the QUS back-
scatter parametric images acquired from a responding and non-
responding patient with LABC tumor prior to chemotherapy onset
and four weeks after start of treatment are presented in Fig. 1c and
d. An overall increase in the ultrasound backscatter power was
detected within the tumor region and also in the AAC parametric
images in responders. No such changes were observed in the
non-responding patients. Parametric images of the ASD did not
present any changes over the course of treatment in any of the
patient populations. Representative light microscopy images of
whole-mount histopathology samples obtained following mastec-
tomy are presented in Fig. 2. In the non-responding patient, glan-
dular tumor cell structure was relatively uniform in size and
shape and distributed as solid sheets of cells throughout the tumor
and large amounts of residual carcinoma were present. In the
responding patient shown, scant cells appeared randomly distrib-
uted in the extracellular matrix throughout the tumor with mini-
mal residual disease present.

Representative backscatter parametric images for a clinically
responding and a non-responding patient acquired before treat-
ment, at weeks 1, 4, and 8, and preoperatively are presented in
Fig. 3a–c, respectively. Responders and non-responders demon-
strated similar backscatter parameter values before treatment with
a mean IBC of 0.13 ± 0.18 � 10�4, and 0.11 ± 0.11 � 10�4 Sr�1 cm�1,
respectively, a mean AAC of 67 ± 5, and 68 ± 5 dB/cm3, respectively,
and a mean ASD of 109 ± 6, and 113 ± 3 lm, respectively. The range
of ASD estimates using the FFSM agreed generally well with the



Fig. 1. Backscatter coefficient plots from responder (a) and non-responder (b). B-mode and parametric images of AAC and ASD images from a responding (c) and a non-
responding breast tumor (d) before starting neo-adjuvant chemotherapy (Pre-Tx) and after 4 weeks of treatment (Week 4). Color bars for AAC and AAC correspond to values
given beside them. The white scale bar represents 10 mm.

Fig. 2. Light microscope images of whole mount histopathology from responder (a) and non-responder (b) with high magnifications. In the responding tumor, carcinoma is
completely destroyed by the chemotherapy treatment. In the non-responding tumor, a large residual carcinoma deposit remaining is shown.
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gland diameters (range: 52–118 lm) observed from histopathol-
ogy images of the breast tumors.

Average changes in IBC, AAC and ASD parameters estimated for
the responders and non-responders over the treatment period are
presented in Fig. 4. The IBC parameters increased during treatment
to a maximum of 1.71 � 10�4 Sr�1 cm�1 in responders at week 8.
Analysis using ANOVA with a Bonferroni correction demonstrated
significant differences in changes of IBC between those values
acquired at weeks 1 and 8 in responders. In contrast, the IBC
parameter from non-responders did not show any changes after
treatment initiation. The two patient populations exhibited a sta-
tistically significant difference in changes of IBC only at week 1
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of treatment (p = 0.032). Like IBC, the AAC parameters increased
after treatment in responding patients and obtained a maximum
of 6.9 dB/cm3 at week 8. In addition, analysis with ANOVA demon-
strated significant differences in changes of AAC between those
values acquired at week 1 and 8 in responder population. This
parameter from non-responders was relatively static at all times
after treatment. The two patient populations exhibited a statisti-
cally significant difference in changes of AAC at week 4
(p < 0.001), week 8 (p = 0.008), and at week 1 (p = 0.007) of chemo-
therapy. The ASD parameter in responders or non-responders did
not appear to be affected by clinical tumor response. Analysis with
ANOVA showed significant differences in changes of the backscat-
ter parameters, AAC, and ASD between the two response popula-
Fig. 3. Representative parametric images of IBC (a), AAC (b), and ASD (c) from a respondin
the same nominal region, prior to treatment (Pre-Tx), as well as at weeks 1, 4 and 8 d
initiation), from left to right, respectively. But, same number of patient could not be main
and physician appointments). Specifically, the number of patients examined before treat
and 7 non-responders), 29 (22 responders and 7 non-responders), 29 (22 responders and
and 5 non-responders), respectively. The white scale bar represents �10 mm.
tions over all treatment groups. Pre-operative scans were
acquired 12–18 weeks after the last cycle of the chemotherapy
(typically 5–6 months after the start of treatment). At that time
since the chemotherapy has been stopped for several weeks at this
stage, it is expected that there is minimal active chemotherapy
induced cell death. Also the complete pathological responders
(with no tumor discernible on ultrasound), and hence who have
no residual tumor left clinically for imaging or for analysis, are
excluded from the averaged data at this time. All of these factors
contribute to a different parameter value at the pre-op stage as
compared to week 8. Therefore, backscatter parameters estimated
from pre-operative scans were not included for statistical analysis
(Table 4).
g (N) and non-responding (NR) patient. The data for each patient was acquired from
uring treatment times, and pre-operatively (Pre-Op, 12–18 weeks after treatment
tained over all time points due to the absence of the patient (compliance with scans
ment, at weeks 1, 4, 8 after treatment and, prior to surgery were 30 (23 responders
7 non-responders), 26 (20 responders and 6 non-responders), and 20 (15 responders



Fig. 4. Average change in IBC (a), AAC (b) and ASD (c) parameters measured in clinically treatment responders and non-responders over treatment time. Error bars represent
the mean ± one standard error. ⁄⁄ (p < 0.005) and ⁄ (p < 0.05) represents the significant different based on ANOVA test. R: Responder; NR: Non-Responder; Pre-Tx:
Pretreatment; Pre-Op: Preoperation.

Table 4
Summary of p values obtained from statistical tests of significance carried out for
changes in backscatter parameters using ANOVA test over treatment times for both
responder and non-responder and also over treatment responses.

Parameters Over treatment time Over responses

R NR Week 1 Week 4 Week 8 Overall

IBC 0.028* 0.822 0.032* 0.096 0. 221 0.069
AAC 0.031* 0.739 0.007* 0.000

�

0.008* 0.000
�

ASD 0.636 0.166 0.269 0.694 0.029* 0.023*

* Statistically significant (p < 0.05).
�

Statistically highly significant (p < 0.0001).
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3.2. Classification of survival analysis

In order to classify the two patient populations based on their
ultimate clinical/pathological response to the treatment, linear dis-
criminant analysis was performed on the changes in the backscat-
ter parameters estimated at weeks 1, 4, and 8, and the week prior
to surgery. Among all three estimated backscatter parameters, the
AAC was the dominant parameter in terms of achieving the best
classification results for the two patient populations at all times
(Table 5). The best linear discriminant analysis based predictor of
treatment response was obtained with the linear combination of
AAC and ASD parameters at 4 weeks (81.8% sensitivity, 100% spec-
ificity and 86.2% accuracy) followed by the one obtained using a
combination of AAC and ASD at week 8 (80% sensitivity, 100% spec-
ificity and 84.6% accuracy) and with less sensitivity using the com-
bination of all backscatter parameters at week 1 (77.3% sensitivity,
85.7% specificity and 79.3% accuracy). The linear discriminant
models for a two patient population classification at weeks 1, 4,
and 8 are shown in Eq. (4). All the responders and non-responders
are predicted with a classifier score of positive and negative values,
respectively. Overall, the combination of AAC and ASD was found
to be the best predictor of treatment response at all times after
starting treatment. A reasonable linear discriminant analysis-
based predictor of treatment response was obtained for the
Table 5
Discrimant analysis at week 1, 4 and 8.

Parameters Week 1 Week 4

Sens. Spec. Accu. Sens.

IBC 56 100 66 32
AAC 68 86 72 82
ASD 50 71 55 50
IBC, AAC 73 100 79 82
IBC, ASD 73 86 76 59
AAC, ASD 73 86 76 82
IBC, AAC, ASD 77 86 79 82
combined data (including weeks 1, 4, and 8) with linear combina-
tion of AAC and ASD (77% sensitivity, 95% specificity and 81% accu-
racy) and the corresponding model is shown in Eq. (5). Fig. 5
presents a feature plot of the change in ASD versus the change in
AAC parameters where the threshold to discriminate ultrasound-
responsive and non-responsive patients in this study is determined
by discriminant analysis and has been indicated by a dashed line.

Kaplan–Meier curves for chemotherapy treatment response
based on clinical-pathological response and linear discriminant
models derived using ultrasonic backscatter parameters acquired
at week 1, 4, and 8 after treatment are presented in Fig. 6. The sur-
vival rate of the pathological responders was significantly higher
than that of the non-responders (p = 0.001). Whereas the estimated
backscatter parameters could classify responders and non-respon-
der population with an accuracy of 79% at week 1, the survival rate
of those two populations did not show a significant difference
(p = 0.318). Results of the survival study demonstrated a higher
survival rate for the ultrasound responding patients compared to
the non-responding patients, identified based on ultrasonic back-
scatter parameters at week 4 (p = 0.043) and week 8 (p = 0.037)
after treatment initiation.

ClassifierScoreWk1¼�0:28þ0:06ASDWk1 lmþ0:24AACWk1 dB cm�3

þ 3:64IBCWk110�4 Sr�1 cm�1

ClassifierScoreWk4¼�1:14þ0:13ASDWk4 lmþ0:53AACWk4 dB cm�3

ClassifierScoreWk8¼�0:76þ0:21ASDWk8 lmþ0:28AACWk8 dB cm�3

ð4Þ

ClassifierScoreCombined ¼ �0:6þ 0:12ASDCombined lm

þ 0:31AACCombined dB cm�3 ð5Þ
4. Discussion

Clinical imaging techniques such as MRI, CT and mammography
have been typically used for assessment of patient responses to
Week 8

Spec. Accu. Sens. Spec. Accu.

100 48 25 100 42
100 86 75 100 82

57 51 70 83 73
100 86 75 100 82
100 69 80 83 82
100 86 80 100 85
100 86 80 100 85
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cancer therapy based on anatomical tumor size measurements,
usually after treatment. Nevertheless, it can take up to several
weeks to a few months to assess treatment response based on
physical size measurements since size changes are often late indi-
cators of response. Several studies have demonstrated the poten-
tial of early assessments of tumor response at days to weeks for
adaptive treatment modification, since changes in tissue at a
microscopic level start to occur early after cancer therapy (Esteva
and Hortobagyi, 2008; Huang et al., 2002). The ultrasonic backscat-
ter parameter characterization technique used in this study is sen-
sitive to such changes in tissue structure and tissue mechanical
properties at a microscopic level.

4.1. Breast cancer response monitoring using ultrasonic backscatter
parameters

In this study, we report for the first time the results of a clinical
investigation on 30 patients with LABC receiving neoadjuvant che-
motherapy, whose tumor responses were monitored using QUS
backscatter parameters with a 7 MHz clinical ultrasound device.
The FFSM was applied here for the first time to extract individual
tissue scatterer properties like scatterer size and acoustic concen-
tration from clinical in vivo breast tumor data in order to determine
if estimates of scatterer properties could be related to tissue micro-
structure changes and to distinguish clinically responding and
non-responding patients. Use of the FFSM permitted fairly good
differentiation of responders and non-responders. Compared to
macroscopic stiffness estimation using elastography techniques
(Falou et al., 2013) or general ultrasonic spectral parameter inves-
tigation as in our previous studies (Sadeghi-Naini et al., 2013b),
backscatter parameter estimation techniques provide more spe-
cific information about the tumor microstructure like scatter size
and acoustic concentration at a microscopic level. Whereas the
elastographic and ultrasound parameters investigated previously
Fig. 5. Feature plots of the change in ASD versus the change in AAC data acquired at week
non-responders have been classified via a linear discriminant analysis, where the determ
exhibited statistically significant differences between responder
and non-responder populations after only 4 weeks of treatment,
the backscatter parameters presented in this study showed prom-
ise in differentiating the treatment responding and non-respond-
ing patients as soon as 1 week after treatment, with statistical
significance. In particular, statistically significant difference in the
AAC parameter were observed at week 1 between two populations
(p = 0.027). The AAC parameter is related to scatterer number den-
sity and scatterer mechanical properties (Feleppa et al., 1986). This
finding suggests that changes in tissue microstructure in the breast
tumor start to occur within 1 week from the initiation of treat-
ment. Examining histopathology images of responding tumors
suggest that as the tumor begins to respond to the treatment it
undergoes various pathological changes including early cellular
changes such as nuclear aggregation, condensation, and fragmen-
tation (karyorrhexis and karyolysis) in tumor cells and fibrosis, col-
lagenization, and microcalcification in the stroma (Sethi et al.,
2012). Invasive ductal carcinoma cells in patients with complete
response begin to die likely within 1–4 weeks after the start of che-
motherapy, and are replaced with collagen and fibrotic deposition
over the long term (months). The early cell-death related altera-
tions in tissue microstructure are linked to significant changes in
ultrasound parameters shortly after the start of treatment. The
changes in structural and mechanical properties of the cancerous
tissue can also lead to increases in acoustic scatterer concentration
consistent with more nuclear fragmentation with cell death. The
IBC ultrasound parameter is more dependent on scatterer size than
acoustic scatterer concentration (Taggart et al., 2007). The ASD did
not undergo any statistically significant changes at any time points
after treatment. This would potentially explain why the IBC param-
eter did not result in statistically significant differences at treat-
ment time points except at week 4 (discussed further below). In
non-responder cases, tumors do not undergo significant cellular
changes due to treatment. Therefore, the backscatter parameters
1 (a), week 4 (b) and week 8 (c) and the week prior to operation (d). Responders and
ined threshold of classes has been demonstrated by dashed lines.
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did not show any significant changes for these patient populations
over treatment time. The reason for having a negative change in
the IBC and AAC parameters in that group may be due to progres-
sive disease identified in some of the non-responding patients,
where the tumors tend to develop large necrotic cores after several
cycles of therapy (necrotic cores were histologically identified
post-mastectomy). The presence or development of necrotic cores
may play a role in the decrease in IBC and AAC parameters for non-
responders.

Linear discriminant analysis results here suggested a favorable
classification and a promising separability of two patient popula-
tions using backscatter parameters acquired at weeks 1, 4, and 8
after chemotherapy initiation. In elastography studies, the sensi-
tivity and specificity in discriminating responder and non-respon-
der populations at best was 44% and 60%, respectively, at week 1,
but increased to 100% and 100%, respectively, at week 4. In addi-
tion, tumor response can often be associated with inflammation
which may confound elastography measurements (Falou et al.,
2013). In the QUS spectral parameter estimation method, where
the spectral parameters like mid-band fit, slope and intercept were
calculated from ultrasound backscatter from tumor, the sensitivity
and specificity at best was 83% and 100%, respectively, at week 4.
However, it is noteworthy that the number of patients included
in the previous studies of elastography and QUS spectroscopy
was 15 and 24, respectively. On the other hand, the study here
investigated the efficacy of the model-based backscatter parame-
ters on 30 patients, thus potentially obtaining greater statistical
power and better accounting for the heterogeneity of responses
in breast tumors, compared to the previous studies. Here, a sensi-
tivity and specificity of up to 82% and 100%, respectively, were
obtained at week 4, and lesser values of 77% and 86% at week 1.
Fig. 6. Kaplan–Meier survival curves for chemotherapy treatment response based on clini
mean survival non-responders 26 ± 11 months) (a) and ultrasonic backscatter parameter
free survival ultrasound-responsive patients 33 ± 11 months, mean survival ultrasound
responsive patients 35 ± 11 months, mean survival ultrasound non-responsive patie
33 ± 10 months, mean survival ultrasound non-responsive patients 25 ± 12 months at w
Due to the small sample size, those specificity, sensitivity and
accuracy values presented here are obtained by using the same
training and test sets. The absence of independent test set results
in optimistic estimations of the performance.

These promising results imply that QUS backscatter parameters
can be potentially used for the early prediction of ultimate treat-
ment response in patients undergoing cancer targeting therapies.
Such an early prediction could be used to facilitate the critical deci-
sion of switching to a more effective therapy or salvage manage-
ment for treatment of refractory patients early during a course of
treatment instead of continuing an ineffective treatment for
months.

Previous studies in cell and xenograft models have demon-
strated that mid-to high-frequency ultrasound is sensitive in
detecting cell death. The cellular nuclei are hypothesized to be
the dominating source of scattering for this frequency range
(Oelze and O’Brien, 2006). The interaction of ultrasound with bio-
logical tissue is determined by the mechanical properties of the
underlying structure. In soft tissues, this structure is composed pri-
marily of cellular matrix containing single cells in an aggregate.
Ultrasonic scattering is caused by structures below and up to the
order of the ultrasound wavelength. Thus, for the frequency range
used in this study here, scatters are arranged as aggregates in the
form of glands and lobules. Aggregates of cells arranged in the
gland and lobules may undergo nuclear condensation and aggrega-
tion in response to chemotherapy (Fig. 7) as shown in
(Banihashemi et al., 2008; Czarnota et al., 1999). These changes
in cellular level predominantly affect only the ductal glands and
lobules’ mechanical properties, not their sizes. This would poten-
tially explain why the ASD parameter is relatively invariant.
Here, we have used a fluid filled sphere model for breast tumor
cal-pathological assessment (mean disease free survival responders 35 ± 11 months,
s acquired at week 1 (b), week 4 (c), and week 8 (d) after treatment (mean disease
non-responsive patients 28 ± 12 months; mean disease free survival ultrasound-

nts 27 ± 11 months, mean disease free survival ultrasound-responsive patients
eeks 1, 4, and 8, respectively.).



Fig. 7. Illustration of nuclear fragmentation within the tumor, induced by chemotherapy treatment.
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ultrasound parameter determination. However, a model able to
take into account more complex aggregates of fluid filled spheres
or other structures may be beneficial in modeling the tumor
response and improving the accuracy of response detection.

4.2. Further imaging modalities for monitoring tumor response to
treatment

Currently, mammography is considered the primary imaging
modality for breast screening. B-mode ultrasound imaging may
also be used, depending on the mammogram findings. Breast
tumor extent is better seen on mammograms and with more com-
plex Dynamic Contrast Enhanced-MR images compared to B-mode
ultrasound. Thus B-mode ultrasound is less often used for measur-
ing tumor dimensions due to poor visibility of tumor margins. Ana-
tomical imaging methods such as mammography, DCE-MRI, and
ultrasound are typically used in the clinic for screening, pre-
treatment assessment, and post-treatment assessment, and are
rarely used to monitor the patient during the treatment
(Giordano, 2003). There remains no clinically accepted functional
imaging modality for early therapy response monitoring and other
methods have exhibited variability. A previous study, which used
DCE-MRI to measure early changes in breast tumor volume in
response to chemotherapy treatment showed no significant
changes after one cycle (3 weeks) despite positive clinical patho-
logical response (Partridge et al., 2005). The modality used in that
study was relatively insensitive in tissue imaging to cell function
changes and requires the injection of exogenous contrast agent
as a marker (Brindle, 2008). Typically, blood tests are only con-
ducted prior to treatment in order to determine the suitability of
patients for chemotherapy, and are not be used to predict treat-
ment response. Diffuse optical imaging (DOI) is a relatively low
resolution imaging technique which may cause uncertainties for
identifying tumor region, especially in the case of small tumors
(Falou et al., 2012; Soliman et al., 2010).

Several ultrasound methods have been explored in therapy
response monitoring. Ultrasound Doppler imaging methods have
been used to monitor tumor vascular disruption in real time fol-
lowing anti-vascular therapy by measuring blood flow velocity
(Gee et al., 2001). Molecular imaging with ultrasound has recently
involved the use of targeted intravascular microbubble contrast
agents. Such large microbubbles however cannot leave the intra-
vascular space and molecular imaging is limited in this compart-
ment (Kaufmann and Lindner, 2007). Unlike these ultrasonic
methods, the QUS backscatter based biomarkers investigated in
this study depend on intrinsic contrast alternations arising from
changes in the microstructure and elastic properties of cancer cells
when they response to treatment, and hence the methods does not
need contrast agent. Elastography, which measures tissue stiffness
by detecting the effects of local tissue deformations, has been
demonstrated recently in the classification of treatment responder
and non-responder at week 4 after treatment initiation (Falou
et al., 2013). Compared to the macroscopic stiffness estimation
using this elastography method, this backscatter parameter esti-
mation technique provides those tissue structural and mechanical
properties at microscopic level. It may be confounded however by
factors such as inflammation and DCIS which may also alter tissue
stiffness. A genetic approach has been investigated recently for
breast cancer therapy response monitoring by analyzing circulat-
ing tumor DNA (Dawson et al., 2013) specific to each tumor.
Compared to this approach, QUS backscatter analysis as used in
this study is rapid, inexpensive and a non-destructive method for
cancer therapy response monitoring with signal changes universal
for tumor response independent largely of tumor type. In our
study, outcomes of patient treatment response classification based
on the week 4 QUS backscatter parameter biomarkers matched
with ultimate clinical and pathological response. Moreover, there
were links based on ultrasound responsiveness to patient
disease-free survival pointing to the utility of these ultrasound
biomarkers to ultimate patient response to treatment and conse-
quent survival.
5. Conclusions

In conclusion, specific information about tissue microstructure
of breast tumors could be extracted from ultrasonic measurements
using backscatter parameter estimation technique shown in this
study compared to conventional B-mode ultrasound. We demon-
strated that backscatter parameter estimates such as scatterer size
and acoustic concentration may be used to monitor chemotherapy
treatment response in breast tumors to discriminate between clin-
ically responding and non-responding patients earlier during a
course of treatment (weeks during treatment instead of months
after treatment). This study was a ‘‘retrospective’’ observational
study which did not affect patient treatment decisions. The aim
of this study was to show the potential of early QUS-assessment
of breast tumor response as an imaging therapy-response assess-
ment tool. In keeping with this, the survival curves that are been
presented in this study are done so in order to highlight the impor-
tance of an early prediction of ultimate treatment response, and
show a linkage between ultrasound parameters (’’biomarkers’’) of
response and outcome. In the future, this may permit an objective
rational change of an ineffective treatment to a more effective one,
since lack of such response can significantly impact the ultimate
survival of the cancer patients. Whereas the current number of
participating patients seems reasonable for the proof of principle
work carried out here, large cohort of patients in future, should
improve the statistical power of this type of study. Invasive ductal
carcinoma which is examined in this is highly pleomorphic in nat-
ure, which contains a broad variability in size and shape of the tis-
sue microstructure. With the frequency range used in this study,
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scattering structures include arterioles, mammary ducts and
glands-any connective tissue structure rich in collagen, and elastin
fibers (Cooper’s ligaments). Thus, for a more accurate backscatter
parameter estimation from treatment responding and non-
responding breast tumors, more detailed scattering models with
knowledge of acoustic impedance of subcellular, cellular, and glan-
dular tissue in order to understand the contribution of each struc-
tural component of the tumor to the ultrasound signal at each
frequency of analysis bandwidth would potentially improve
results. Nevertheless, the findings here suggests that it may be pos-
sible to use this method to facilitate clinicians in making decisions
to modify cancer therapies early on to better personalize cancer
therapy.
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