
  

 
Abstract— Radiation therapy is a major treatment option for 

brain metastasis. For radiation treatment planning and 

outcome evaluation, magnetic resonance (MR) images are 

acquired before and at multiple sessions after the treatment. 

Accurate segmentation of brain tumors on MR images is 

crucial for treatment planning, response evaluation, and 

developing data-driven models for outcome prediction. Due to 

the high volume of imaging data acquired from each patient at 

multiple follow-up sessions, manual tumor segmentation is 

resource- and time-consuming in clinic, hence developing an 

automatic segmentation framework is highly desirable. In this 

work, we proposed a cascaded 2D-3D Unet framework to 

segment brain tumors automatically on contrast-enhanced T1-

weighted images acquired before and at multiple scan sessions 

after radiotherapy. 2D Unet is a well-known structure for 

medical image segmentation. 3D Unet is an extension of 2D 

Unet with a volumetric input image to provide richer spatial 

information. The limitation of 3D Unet is that it is memory 

consuming and cannot process large volumetric images. To 

address this limitation, a large volumetric input of 3D Unet is 

often patched to smaller volumes which leads to loss of context. 

To overcome this problem, we proposed using two cascaded 2D 

Unets to crop the input volume around the tumor area and 

reduce the input size of the 3D Unet, obviating the need to 

patch the input images. The framework was trained using 

images acquired from 96 patients before radiation therapy and 

tested using images acquired from 10 patients before and at 

four follow-up scans after radiotherapy. The segmentation 

results for the images of independent test set demonstrated that 

the cascaded framework outperformed the 2D and 3D Unets 

alone, with an average Dice score of 0.9 versus 0.86 and 0.88 for 

the baseline, and 0.87 versus 0.83 and 0.84 for the first follow-

up. Similar results were obtained for the other follow-up scans. 
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I. INTRODUCTION 

Malignant tumors in the brain can be classified into the 

primary and secondary (metastatic) tumors. Primary brain 

tumors initiate in the brain, while metastatic brain tumors 

originate from a malignancy in another part of the body, e.g. 

lung, breast, kidney, colon. Up to 40% of cancer patients 

develop brain metastases [1]. Patients with brain metastasis 

suffer from poor overall survival even after treatment [2], [3]. 

Brain metastasis can present as single or multiple tumors. 

Clinical records show that 50% of brain metastases occur 

with a single tumor, 20% with two tumors, and 30% with 

three or more tumors [4]. Early diagnosis and precise 

treatment of brain metastasis may lead to less brain 

symptoms and improve patient’s quality of life. 

Based on a number of diagnostic factors including the 

origin of primary cancer, number and location of metastases, 

and symptoms, a treatment regimen is planned for brain 

metastasis. Current treatment options for brain metastasis 

include one or a combination of surgery, systemic therapy, 

whole-brain radiation therapy (WBRT), stereotactic 

radiosurgery (SRS), and hypo-fractioned stereotactic 

radiation therapy (SRT). With the advancements of imaging 

technologies, surgery is a safe but the most invasive method 

of choice for brain metastasis treatment. The main decisive 

factors to proceed with surgery include accessibility and size 

of the tumor, patient’s age, and the degree of mass effect [5]. 

In Whole-brain radiation therapy, radiation is given to the 

whole brain over a period of several weeks. SRS delivers 

very high-dose radiation to a precisely-targeted area in a 

single session (fraction). Sometimes the location of the tumor 

is too close to a critical structure or the size of the tumor is 

large. In these cases, high-dose radiation is frequently 

delivered to tumor in few fractions (hypo-fractionated SRT).  

Magnetic resonance imaging (MRI) is performed before and 

at several follow-up sessions after radiotherapy as part of 

standard of care for treatment planning and therapy outcome 

evaluation. Local response  of brain metastasis to radiation 

therapy is conventionally assessed based on changes in 

physical dimensions of tumor on follow-up imaging [6]. 

Therefore, for each follow-up assessment, the tumors are 

required to be segmented on magnetic resonance (MR) 

images. Manually segmenting tumors on several 2D planes of 

a 3D MRI is a laborious task, especially in the presence of 

multiple follow-up scans for a single patient. An automatic 

framework for segmentation of brain tumors is highly 

desirable and can streamline radiation therapy workflow 
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considerably. Development of such methods have been the 

focus of intense research efforts, and various algorithms have 

been proposed including the morphological methods [7], 

region-based methods [8], deformable models [9], and 

models based on deep learning [10]. 

Not only an automatic brain tumor segmentation 

framework can streamline the radiation therapy workflow, 

but also it can help to develop radiomics-based predictive 

models of therapy response and outcome. Radiomics aims to 

extract minable high-dimensional features from clinical 

images for diagnostic and prognostic applications [11]. 

Radiomic features quantify the shape, or spatial arrangement 

of the voxel intensity values (texture) within an abnormality 

and can be applied on the original or filtered images [12]. 

Radiomic features have shown a good potential to predict the 

outcome of  therapy in different cancer sites [13]–[17]. In 

such applications, the radiomic features are extracted from 

the tumor region and its surrounding areas. Therefore, to 

adapt radiomic models for outcome prediction in cancer 

therapeutics, tumor segmentation is an initial necessity. An 

automatic segmentation framework can facilitate the 

adaptation and development of radiomic models for brain 

tumor management. 

In this study, we proposed an automatic framework for 

accurate segmentation of brain tumors on contrast-enhanced 

T1-weighted images acquired before (baseline) and at several 

follow-up sessions after radiation therapy. We applied a 

cascade of 2D and 3D Unets to guide the focus of the 

framework to the tumor regions and subsequently segment it 

with high accuracy. 2D Unet [18] is a well-known and 

powerful network, widely used for medical image 

segmentation. 3D Unet [19] is an extension of 2D Unet 

which aims to incorporate more spatial information for 

segmentation by using 3D voxels instead of pixels. One 

limitation of 3D Unet is that it is memory demanding. In 

order to meet the memory requirements, one has to patch the 

input volume into smaller volumes which leads to loss of 

context and spatial information for segmentation. To address 

this problem, we trained two 2D Unets one after another 

which find the approximate position of the tumor and then 

crop the image around the tumor. Specifically, the framework 

first crops the input volume (512 × 512 × 128 voxel) to a 

256 × 256 × 128 voxel volume, and then to a volume with 

size of 128 × 128 × 128 voxel that contain the entire 

tumor. Subsequently, this volume is fed to the 3D Unet for 

final segmentation with no volume patching. The framework 

was trained and validated using images acquired from 96 

patients diagnosed with brain metastasis, and tested 

independently using images acquired from 10 patients. The 

results show that the cascaded network outperformed the 2D 

and 3D Unets alone, with a Dice score of 0.9 for the baseline 

and 0.87, 0.84, 0.82 and 0.82 for the first to forth follow-up 

scans, respectively.  

II. METHODS 

A. Dataset 

This study was conducted in accordance with institutional 

research ethics approval from Sunnybrook Health Sciences 

Centre (SHSC), Toronto, Canada. The imaging data were 

collected from 106 patients diagnosed with brain metastasis 

and planned for hypo-fractionated stereotactic radiation 

therapy (SRT). The dataset included the gadolinium contrast-

enhanced T1-weighted images acquired before SRT for 

treatment planning, and at up to 4 follow-up sessions after 

treatment. The dataset also included the tumor contours for 

each patient, delineated by expert oncologists and 

neuroradiologists. These tumor contours were used as ground 

truth to train and evaluate the framework. The baseline 

images of 90 and 6 patients were used for training and 

validation of the framework, respectively. The baseline and 

follow-up images of 10 patients (6 patients for the fourth 

follow-up) were used as an independent test set for 

framework evaluation 

B. Segmentation Framework 

Figure 1 shows a scheme of the proposed automatic 

segmentation framework. The framework consists of three 

separate networks, two 2D Unets and one 3D Unet, each of 

them was trained separately. The purpose of 2D Unets is to 

find an approximate position of the tumor. Once the 

approximate position is found, the image is cropped around 

the tumor position to make the size of input for the next 

Figure 1 - System Overview. For a volumetric input 512 × 512 × 128 voxel, all slices are initially fed to a 2D Unet one by one. The generated masks 

from the 2D Unet are used to find an approximate tumor position (𝑥, 𝑦). The volumetric input image is then cropped around (𝑥, 𝑦) into a 256 × 256 ×
128 voxel volume. A similar procedure is performed to reduce the size of volumetric image containing the tumor to 128×128×128 voxel. This volume is 

then fed into a 3D Unet for final segmentation with no patching. 
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network smaller. Specifically, the size of the input images for 

the first 2D Unet was 512 × 512 pixel. The output of this 

network was a 512 × 512 pixel tumor mask. The second 2D 

Unet was trained on cropped 256 × 256 pixel slices. For 

training this network, cropping was done manually using 

ground truth data. It should be noted that manual cropping 

was only done on the training data to generate training 

samples. All the test images were cropped automatically as 

follows. For the images of the independent test set, the 512 ×
512 pixel tumor masks generated by the first 2D Unet were 

used to find an approximate location of the tumor and crop a 

256 × 256 pixel window around the tumor area. In the next 

step, this cropped window was fed to the second 2D Unet. 

The output of the second 2D Unet was a 256 × 256 pixel 

tumor mask. The final approximate position of the tumor was 

found using these 256 × 256 pixel tumor masks and used to 

crop the input volume (512 × 512 × 128 voxel) to a 128 ×
128 × 128 voxel volume containing the whole tumor. The 

cropped volume was subsequently fed to the 3D Unet for 

final segmentation. The 3D Unet was trained on manually 

cropped 128 × 128 × 128 voxel volumes from the training 

set.  

1) 2D Unet  

Unet is a well-known network structure for medical image 

segmentation consists of 19 fully-connected layers. It exploits 

the power of skip connections to tackle the trade-off between 

context and localization. The U-like structure of the network 

consists of two paths: the analysis path and the synthesis 

path. The analysis path consists of a series of convolution and 

max-pooling. The synthesis path consists of up-sampling and 

deconvolution layer. Skip connections connect the layers of 

the same resolution from the analysis path and synthesis path. 

The connection from the analysis path to the synthesis path 

provides high-resolution contextual features to deconvolution 

layers [20].  

As described previously, two 2D Unets were applied in the 

proposed cascaded structure to guide the focus of the 

framework to the tumor area. The second 2D Unet potentially 

outputs a better approximation of the tumor region compared 

to the first 2D Unet because its smaller-size input image 

includes less redundant information and a higher 

propositional area of tumor. 

The output of each 2D Unet for a patient is a set of masks. 

To find the approximate position of the tumor from these 

masks, a logical OR operation was applied on all the masks 

to create a single mask presenting an upper-bound of the 

tumor areas in different slices. Subsequently, the connected 

components were identified in this single mask and the center 

of each connected component was regarded as the 

approximate center of the corresponding tumor. The 

approximated centers were used to crop the image around the 

tumor areas. 

2) 3D Unet 

3D Unet is an extension of 2D Unet that replaced its 2D 

components with 3D components to provide richer spatial 

information through volumetric segmentation. In an 

architecture similar to 2D Unet, 3D Unet also contains 

contracting and expanding path. In the contracting path, each 

layer contains two 3 × 3 × 3 convolutional layers followed 

by a rectified activation unit (ReLu) and max-pooling.  In the 

expanding path, each layer consists of 2 × 2 × 2 

upconvolution followed by two 3 × 3 × 3 convolutions. In 

this study, 3D Unet was trained on 128 × 128 × 128 voxel 

volumetric T1-weighted MRI images. 

III. RESULTS 

The tumor segmentation results obtained for the T1-

weighted images acquired form five representative patients 

at the baseline and four follow-up sessions are shown in 

Figure 2. This figure presents the final segmentation masks 

generated by the framework overlaid on the ground truth 

masks. Table I presents the average Dice similarity 

coefficient between the generated and ground truth masks 

over all tumor slices for these five patients.  The results 

presented in Figure 2 and Table I imply that whereas the 

network generated accurate segmentation masks for the 

baseline and first follow-up, the accuracy of the 

segmentation gradually decreased on the subsequent follow-

up images. This trend may be due to the fact that in some of 

these cases, the tumor shrunk after radiation therapy, made it 

harder to segment the remaining tumor. Another possible 

reason is that the texture of tumor may change at many 

months after multiple session of radiation therapy, resulting 

in test samples with no similar case in the training set that 

makes the segmentation challenging for the network. 

 

 

Figure 2 – An axial cross-section image of five representative tumors of the 

independent test set (first to fifth rows) at the baseline (a) and (b), first (c), 
second (d), third (e), and forth (f) follow-up scans. The blue, red, and purple 

overlays represent the ground truth mask, automatic segmentation mask, 

and the overlap region, respectively. 

Table II compares the segmentation result of the cascaded 

2D-3D Unet with 2D and 3D Unets alone in terms of average 

Dice similarity coefficient and Hausdorff distance for all 

patients of the independent test set. The results of this table 

show that the cascaded structure improved the segmentation 

results considerably compared to the 2D or 3D Unets alone. 
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IV. DISCUSSION 

In this study, a cascaded deep-learning framework was 
proposed for automatic segmentation of brain tumors on T1-
weighted MR images before and after radiation therapy. Two 
back to back 2D Unets cropped the volumetric input image of 
the 3D Unet in the framework in order to tackle the trade-off 
between context and localization. Brain tumor segmentation 
is crucial for follow-up assessment and response evaluation 
after radiation therapy as well as developing radiomics-based 
models for therapy outcome prediction. Results from this 
study showed that the cascaded 2D-3D Unet outperformed 
the 2D 3D Unets alone in brain tumor segmentation.  Further 
investigation is required to evaluate whether the proposed 
framework can provide enough accuracy for SRT response 
evaluation based on the measured changes in the physical 
dimensions of tumor on follow-up imaging. Such 
assessments have been planned as a future direction of this 
research. 

TABLE I. THE DICE SIMILARITY COEFFICIENT FOR THE 

BASELINE AND FOUR FOLLOW-UPS (FU) FOR THE FIVE 

PATINETS OF FIGURE 2. 

 

TABLE II. THE DICE SIMILARITY COEFFICIENT (UP IN EACH 

CELL) AND HAUSDORFF DISTANCE (DOWN IN EACH CELL) FOR 
THE BASELINE AND FOUR FOLLOW-UPS (FU) FOR ALL PATIENTS 

OF THE INDEPENDENT TEST SET. 
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Network   Baseline FU1 FU2 FU3 FU4 

2D + 3D 

Unets 

0.90 ± 
0.08 

0.87 ± 
0.07 

0.84 ± 
0.08 

0.82 ± 
0.9 

0.82 ± 
0.08 

1.12 ± 

0.3 mm 

1.36 ± 

0.4  mm 

1.38 ± 

0.3  mm 

1.37 ± 

0.3  mm 

1.35 ± 

0.2  mm 

2D Unet 

0.86 ± 

0.09 

0.83 ± 

0.1 

0.81 ± 

0.09 

0.79 ± 

0.08 

0.78 ± 

0.09 

1.43 ± 
0.5 mm 

1.89 ± 
0.6  mm 

1.88 ± 
0.4  mm  

1.91 ± 
0.4 mm 

1.97 ± 
0.3  mm 

3D Unet 

0.88 ± 

0.08 

0.84 ± 

0.08 

0.82 ± 

0.08  

0.8 ± 

0.09 

0.8 ± 

0.09 

1.25 ± 

0.4  mm 

1.69 ± 

0.4  mm 

1.75 ± 

0.4 mm 

1.73 ± 

0.3  mm 

1.73 ± 

0.3 mm 

Patient Number   Baseline FU1 FU2 FU3 FU4 

1 
0.91 ± 

0.06 

0.9 ± 

0.05 

0.88 ± 

0.04 

0.85 ± 

0.05 

0.84 ± 

0.06 

2 
0.88 ± 

0.07 

0.87 ± 

0.04 

0.83 ± 

0.03 

0.79 ± 

0.08 

0.79 ± 

0.05 

3 
0.87 ± 
0.05 

0.86 ± 
0.05 

0.82 ± 
0.03 

0.81 ± 
0.04 

0.8 ± 
0.04 

4 
0.89 ± 

0.03 

0.86 ± 

0.05 

0.84 ± 

0.06 

0.80 ± 

0.04 

0.81 ± 

0.03 

5 
0.90 ± 

0.04 

0.88 ± 

0.06 

0.85 ± 

0.05 

0.84 ± 

0.04 

0.84 ± 

0.06 

Mean ± SD  
0.89 ± 

0.08 

0.87 ± 

0.08 

0.84 ± 

0.07 

0.81 ± 

0.09 

0.81 ± 

0.08 
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