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Abstract. Large blood vessels can produce steep temperature gradients in heated tissues leading
to inadequate tissue temperatures during hyperthermia. This paper utilizes a finite difference
scheme to solve the basic equations of heat transfer and fluid flow to model blood vessel cooling.
Unlike previous formulations, heat transfer coefficients were not used to calculate heat transfer
to large blood vessels. Instead, the conservation form of the finite difference equations implicitiy
maodelled this process. Temperature profiles of heated tissues near thermally significant vessels
were calculated. Microvascular heat transfer was modelled either as an effective conductivity
or a heat sink. An increase in perfusion in both microvascular medels results in a reduction of
the cooling effects of large vessels. For equivalent perfusion values, the effective conductivity
model predicted more effective heating of the blood and adjacent tissne. Furthermore, it was
found that optimal vessel heating strategies depend on the microvascular heat transfer model
adopted; localized deposition of heat near vessels could produce higher temperature profiles when
microvascular heat transfer was modefled according to the bioheat transfer equation (BHTE) but
not the effective thermal conductivity equation (ETCE). Reduction of the blood flow through
thermally significant vessels was found to be the most effective way of reducing localized
cooling.

I. Introduction

Theoretical, experimental and clinical studies have demonstrated that large blood vessels can
produce localized cooling in heated tissues during hyperthermia treatments (Roemer 1991,
Lemons et al 1987, Levin ef al 1994). Consequently, an increasing amount of work has
been dedicated to the incorporation of large vessel effects in bioheat transfer formulations
(Mooibroek and Lagendijk 1991, Chen and Roemer 1992). Most algorithms calculate heat
transfer to or from large vessels based on heat transfer coefficients derived from analytical
solutions of forced convection in cylindrical ducts (Roemer 1991). Heat transfer coefficients,
however, depend on factors that are difficult to incorporate in bioheat transfer algorithms,
The coefficients depend on whether the blood is thermally developed (i.e. if the normalized
radial temperature profile is independent of axial position (Shah and London 1978)), the
perfusion of tissue surrounding the vessel (tissue thermal resistance (Crezee and Lagendijk
1992)), the vessel shape (geometrical factors). Furthermore, heat transfer coefficients vary
during transjent increases in temperature (Basmadjian 1990} and may vary cireumferentially.
Therefore, there is a rationale to develop algorithms that do not depend on heat transfer
coefficients to calculate heat transfer to and from thermally significant vessels.
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The number and complex geometry of blood vessels in tissue do not allow one to account
for each vessel individually, and thus continuum models are used to model heat transfer in
the microcirculation. Continuum models average the effects of many blood vessels in order
to predict a local average temperature (Baish 1992). Two continuum models traditionally
nsed are the Pennes bioheat transfer equation (BHYE) and the effective thermal conductivity
equation (ETCE). The applicability of these microvascular bicheat transfer formulations is
controversial. Recent experimental studies however support both the ETCE (Crezee and
Lagendijk 1990) and the BHTE models (Moros ez gl 1993a). It is not clear which model is a
better approximation and under what conditions, therefore both models are examined here.

In this work, the conjugate heat transfer problem (i.e. modelling temperatures in tissue
and blood regions) is sofved numerically without using heat transfer coefficients, in a manner
similar to the one proposed by (Moros et al 1993b). The blood and tissue domains are
modelled by two equations, which for cylindrical coordinates and axial flow become

2 2
Pbcb?a—i: + Pbcbu(")% =k (271: + i {Z; + E;TT) + B (L
aT 32T 1397  3°T
vy = Kegr ( = i T

where p is the density (g cm™?), ¢ is the specific heat capacity (J g=! per °C), T is the
temperature (°C), u(r) is the velocity of blood (em s71), % is the thermal conductivity
(W cm™! per °C), P is the volumetric power deposition rate (W em™), w is the volumetric
perfusion rate (g cm™> s7') and kg is the tissue effective conductivity for the ETCE.
Subscripts art, b and t denote arterial, blood and tissue, respectively. Equation (1) models
the convective effects of thermally significant vessels while equation (2) the effects of tissue
and microvascular heat transfer.

Temperature profiles of heated tissues close to a thermally significant vessel are
calculated with microvascular cooling modelled by the BHTE or ETCE models, Furthermore,
to directly compare the simulation results, the values of wy, for the BHTE and k. for the
ETCE model are assigned equivalent values according to experimentally derived data in fixed
bovine kidneys {Crezee and Lagendijk 1990). Radial and axial temperature profiles are
examined. Finally, strategies to minimize large vessel cooling for steady-state hyperthermia
are examined: increasing the power deposition near the vessel, using a modality that heats
blood as effectively as tissue and partial occlusion of the blood vessel.
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2. Numerical methods

Equations (1) and (2) were solved by the method of finite differences. The conductive terms
were discretized according to central differences, while the convective terms according to
upwind differences (Patankar 1980). The resulting system of equations was solved using the
alternate direction implicit (ADI) method allowing steady state and transient modelling (Ames
1977). The conductivity discontinuities at the vessel-tissue interface for the ETCE model
were dealt with by using the harmonic mean of the vessel and tissue conductivities (Patankar
1980). Grid points were concentrated near the vessel region by linearly increasing the radial
step size from the vessel centre. The number of radial nodes used was typically 600 and the
number of axial nodes 300. The axial step size was I mm while the radial step size varied
from 3.6 x 10~* mm to 0.2 mm. The simulations were completed in 2 to 9 h, depending on
the problem settings. The numerical methods are compared against benchmark problems in
appendix A demonstrating good accuracy. Simulations were performed on either a Silicon
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Graphics (4D/440 VGX and Onyx series) or an IBM RISC-6000 computer. Further details
on the numerical methods can be found elsewhere (Kolios ef al 1994).

Heated volume (rq=2 cm)

Blood

z=0cm
rt- vessel

Figure 1. Computer simulation geometry. Three concentric cylinders represent the tissue volume
(rou = 4 cm), heated region (rq = 2 cm) and the blood vessel (r = variable). Uniform power
deposition is assumed throughout the entire heated field, apart from the blood vessel.

The geometry used for the simulations is shown in figure 1 and consists of three distinct
concentric cylinders, the innermost representing a large blood vessel, the intermediate the
actively heated volume and the outer the untreated tissue. The thermally significant vessel
is located at the centre of the cylinder, within a heated volume of radius 2 cm representing
a hypothetical case of tissue heating. The heated volume is enclosed in unheated tissue and
the outer radial boundaries are kept at body temperature. The entrance to the field was set
either to body temperature or to an adiabatic condition (87 /dz = 0). An adiabatic condition
was implemented for the exit. Uniform power absorption was assumed throughout the entire
heated field representing an idealized flat beam. The absorption in the blood vessel region
was set to zero, consistent with ultrasound heating. The vessel diameter () and average
velocity ((u)) were assigned physiological values (table 1) and represent vessels considered
thermally significant according to previous analytical studies (Crezee and Lagendijk 1992).
A parabolic blood velocity profile was assumed which is a reasonable approximation for the
vessel sizes considered in this study. A list of the input physical parameters is given in table
2. For the BHTE, perfusion values ranged from 0 to 0.07 g cm~* s~!, spanning the range of
volumetric perfusion rates encountered in the human body. The effective conductivity was
assigned values ranging from 0.006 (unperfused muscle tissue) to 0.18 W cm™! per °C. To
facilitate the comparison of profiles, all data were normalized to the maximum temperature
in the heated field. The normalized temperature profiles were independent of the specific
absorption rate magnitude (SAR) for both models, allowing the comparison (since the
equations are linear).

The expression used to correlate effective conductivity and volumetric perfusion was

ket = ke (1 4+ o' wy) (3)
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Table 1. Significant vessel diameters and average flow rates (Crezee and Lagendijk 1992, Chato
1980). Vessel flow values linearly extrapolated for vessel diameters not found in references.

Biood vessel diarneter {mm)  Average velocity (cm s~

2 20

14 10.5
1 8§

0.8 7.5
0.6 ' 6.0
04 5.5
0.2 3.4

Table 2. Listing of physical parameters used in simulations {(Duck 1990).

Tissue specific heat capacity (J g~! per °C)  4.180

Tissue density (g cm™) 1.000
Tissue conductivity (W em™" per °C) 0.006
Blood specific heat capacity (J g‘l per °C)  4.180
Blood density (g cm™>) 1.000
Perfusion rate (g cm™> 5~1) variable

where o is an empirical parameter (0.12 ml min~' per 100 g) (Crezee and Lagendijic
1992). Linear relations between effective conductivity and volumetric perfusion have also
been found by others (Dutton 1993, Bowman ef al 1989).

3. Results

A typical tissue temperature profile is shown in figure 2. The increase in tissue temperature
is a result of the power deposition; cooling in the centre of the cylinder is due to the
effects of the blood vessel. At the edges of the field the temperature decays to the body-
core temperature. Thermal equilibration lengths, radial and axial temperature profiles were
calculated and compared by analysing the temperature profiles.

3.1. Thermal equilibration lengths

The thermal equilibration length (TEL) is defined as the axial distance required for the
blood to reach within e~! of the surrounding maximum tissue temperature. Vessels with
long equilibration lengths are considered thermally significant due to their ability to cause
localized tissue cooling. Figure 3(a) displays the thermal equilibration lengths for the vessels
of table 1 plotted against the product of the Peclet number (the ratio of the mean velocity
and the thermal diffusivity of blood) and the vessel diameter. The product is an indicator
of the convective vessel strength, and when the TEL is greater than the physical length
of the vessel it results in localized tissue cooling. The TEL also depends on the thermal
properties of the surrounding tissues. Figure 3(b) demonstrates the dependence of the TEL
on perfusion for both the BHTE and ETCE models for equivalent perfusion values for a 1 mm
vessel (equation (3)). An increase in tissue perfusion results in shorter thermal equilibration
lengths for both models although the effect is greater for the ETCE compared with the BHTE.
Both curves are characterized by a steep reduction in the TEL for lower perfusions followed
by a levelling off at higher perfusions, for all vessel sizes. For a2 1 mm diameter vessel
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Figure 2. Steady state temperature profiles for the simulation geometry. Localized cooling of
tissue s induced by the large blood vessel (5 = 1 mm, {u) =8 cms™), wy = 0.002g cm™3 571,
BHTE model}. A parabolic blood velocity profile is assumed.

high tissue perfusion (wy, = 0.02 g cm™ s71) can reduce the TEL by ~50% according to
the BHTE and ~80% for the ETCE.

3.2. Radial temperature profiles

Tissue temperatures around farge vessels are also important to model, since cooling of
tumour cells close to the vessel could lead to the regrowth of the tumour (Roemer 1990).
Figures 4(a) and (&) iilustrate that tissue temperature increases near the vessel wall when
perfusion is increased for both models. Again, the effect is greater for the ETCE model. The
increase in vessel wall temperature is a direct result of the increased tissue conductivity
(Crezee and Lagendijk 1992). The BHTE predicts better heating at the edges of the field
for an increase in perfusion while for the ETCE the temperature profiles shift towards the
vessel and edge temperatures decrease. This is due to the enhanced conduction to the
vessel (and thus removal of energy). For the BHTE, higher perfusions shape the temperature
field according to the power deposition pattern, giving rise to more uniform radial tissue
profiles by reducing the smoothing effects of conduction. Hence, the effect of perfusion
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Figure 4. Simulated radial temperature profiles near vessels: effect of perfusion according to
(«) the BHTE and (&) ETCE models. Profiles normalized to maximum temperature at z = 4 cm
for a § = | mm vessel. Similar line styles in graphs comrespond to equivalent perfusion values
according to equation (3). Higher temperatures are predicted near vessels for the ETCE, especially

at the vessel wall,



484 M C Kolios et al

is to increase heat transfer to large vessels and adjacent tissue temperatures in both of the
models of microvascular heat transfer. As a result, an increase in perfusion shortens the
width of the radial cooling gradient reducing large vessel cooling. IHowever, the power
deposited must be increased to reach the same target temperature.

- 3.3, Axial temperature distributions

Figure 5 illustrates the mixing-cup temperatures (Crezee and Lagendijk 1992) of a 1 mm
diameter vessel ({#}) = 8 cm s~!). For high perfusions and according to the ETCE the
axial average temperature curves are exponential and approach the limit of the Graetz
(D) problemf (figure 5(b)). Furthermore, the heat transfer coefficients approach those of the
(D) problem (Crezee and Lagendijk 1992). Conversely for low perfusion the axial average
temperature increases linearly according to the Graetz () problem. When microvascular
heat transfer is modelled according to the BHTE, which has not been examined previously,
a similar pattern occurs (figure 5(a)). Axial blood temperature increases exponentially
and the heat transfer coefficients approach the values obtained in the (T) problem. The
mictovasculature, according to the BHTE formulation, has the ability to modulate heat
transfer to large vessels. Therefore, the effects of thermally significant vessels in poorly
perfused tissues such as fat are more pronounced, regardless of which of the two models of
microvasculature heat transfer is more accurate. High perfusion increases heat transfer
to large vessels but simultaneously increases the power required to attain therapeutic
temperatures.

3.4. Strategies to reduce large vessel cooling

3.4.1. Increasing power deposition to the vessel. A region of increased SAR was
implemented as a cyfinder of a radius twice the diameter of the blood vessel, simulating
an idealized situation in which excess power can be deposited locally. The corresponding
steady-state temperature profiles were analysed and figure 6 illustrates the results for a
8 = 1 mm vessel. Increasing the SAR by a factor of three or more has a substantial effect on
the temperature distribution surrounding the blood vessel for the BHTE model (figure 6(a)).
High perfusion, according to the BHTE, shapes the temperature distributions according to
the SAR since the surrounding tissue acts as a strong heat sink. Therefore, increasing the
SAR close to the vessel allows one to compensate for heat loss towards the vessel. For the
effective conductivity model, an increase of SAR by a factor of 5 (figure 6(b)) produces
minimal normalized temperature increases around the vessel. This is because temperature
gradients created by the non-uniform SAR are rapidly smoothed by the enhanced conduction
effects of perfusion. Furthermore, the Tingex curvesi for the effective conductivity model
show minimal improvement caused by the localized increase in the SAR {(data not shown).

3.4.2. Effect of heating modality The effect of heating modality was examined by
assuming blood and tissue to have the same volumetric power absorption (approximating
microwave heating), and by assuming no absorption by blood (modelling ultrasonic heating).
Normalized temperature profiles were virtually unchanged when uniform SAR was applied

7 The Graetz problem involves a fluid at temperature T, flowing through a cylinder that has its wall kept at a
constant temperature Ty, (the Gractz @ problem) or at constant heat flux (the Graetz @ problem). The solution
gives the steady-state temperature and heat transfer coefficients as a function of radial and axial distance (Shah
and London 1978).

t Tindex is the percentage of measurements above a particular temperature plotted as a function of temperature.
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to the blood, for all of the vessels sizes (data not shown). The power deposition rates
could not overcome the convective strength of the thermally significant vessels and are in
accordance with the finding of others (Ebadian and Zhang 1990, Roemer 1991).

1.2 —— . . p—
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Figure 7. Temperature profiles after reduction of blood flow rates through thermally significant
vessels (§ = 1 mm vessel, z = 4 ¢cm). When the velocity (i.e. mass flow rate) of biood through
a large vessel is reduced, the surrounding tissues may reach therapeutic temperatures.

3.4.3. Vessel occlusion. Vessel occlusion was simulated by reducing the velocity of the
blood through the vessel, thus representing various degrees of partial occlusion. Typical
results are shown in figure 7. The radial profiles indicate that moderate occlusion (in
this example for a § = 1 mm vessel and velocities of 8,6,4 cm s7!) does not significantly
improve the temperature profiles. However, if the average velocity of the blood is drastically
reduced (2.0 to 0.5 cm s™'), the temperature profile is improved. For an average blood
velocity of 0.5 cm s~!, the vessel wall reaches to within 90% of the maximum temperature,
rendering the vessel thermally insignificant. When the corresponding Tigg.x curves are
plotted for the simulations, a significant improvement results from the occlusion (data
not shown). Greater temperature homogeneity with occlusion has been demonstrated both
clinically (Levin ef al 1994} and experimentally (Jia ez a! 1993).

4, Discussion

A novel computational model of bicheat transfer has been presented, based on the
fundamental equations of energy conservation. The model is not dependent on parameters
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such as heat transfer coefficients which have an ambiguous applicability in hyperthermia
when used to model blood vessel cooling, and thus should provide more accurate predictions
of temperature profiles. For example, errors due to ommission of entrance effects are
estimated to be in the range of 10% (see appendix B). Perfusion of the surrounding tissue can
also change the values of heat transfer coefficients. These variations, however, for the steady
state and axisymmetric cylindrical geometries are bounded by the constant temperature and
constant heat flux heat transfer coefficient values for the Graetz problem, for both the BETE
and ETCE models. Moreover, vessel shape can modify heat transfer to vessels; elliptical
channels of eccentricity ¢ = 0.25 (that may be expected in the venous system) show
differences in heat transfer coefficients of almost three orders of magnitude between the
endpoints of the major and minor axes, albeit the differences average out when integrated
over the circumference (Basmadjian 1990). The new model however can account for all of
the above factors since no assumptions are made about the heat transfer coefficients. This is
predicted to be particularly important in transient calculations, since heat transfer coefficients
increase when a step change in temperature occurs at the vessel wall until a steady state
is reached (Basmadjian 1950). The cylindrical model in the present form, however, does
not take into account the architecture of vessel networks and its effects on the temperature
distributions. Therefore conclusions are based on the assumption that a large vessel acts
as a dominant cooling source without interacting with other thermally significant vessels in
the network. The validity of this approximation depends on the large vessel density of the
target tissue (Lagendijk et al 1992).

Using the new model it was shown that the BHTE and ETCE differ in both predictions of
temnperature distributions near large vessels and optimal strategies to overcome their effects.
For the ETCE, temperature peaks due to localized energy deposition are smoothed out due to
conduction. In the BHTE model there is less spreading of the temperature profiles which tend
to match the SAR pattern in the limits of high perfusions. Hence, when heating modalities
with an adjustable or variable SAR are used to heat tissues, the ETCE model predicts smooth
temperature distributions due to enhanced conduction effects, more so in the limits of large
perfusions. Figure 6 illustrates these differences. Microvascular flow, in both models,
increases heat flow to significant vessels. For the ETCE, an increased perfusion reduces the
thermal resistance of the surrounding tissue. Similar effects are seen for the BHTE as the
maximum temperature boundaries approach the vessel wall. Figures 4 and 5 illustrate the
resultant increase in vessel wall and surrounding tissue temperature. Therefore, validation
of microvascular heat transfer models is required before they can be used in the planning
and delivery of hyperthermia,. especially for well perfused organs and tumours.

" Despite the inherent simplifications of the continuum models, good agreement between
their predictions and experimental data have been reported in hyperthermia of dogs thighs
in vivo (Moros et al 1993a), indicating that a continoum approximation for microvascular
heat transfer in treatment planning may be sufficiently accurate. The authors found better
agreement for the BHTE and emphasized the need to include large vessels in thermal models
to interpret the temperature data obtained. Utilizing the above data, Rawnsley et al (1994)
have shown that large vessels included in heat transfer algorithms can improve predictive
ability for both the BHTE and ETCE models, albeit the BHTE had a statistically significant
better ability to predict the temperature distributions. Other studies however (Crezee et
al 1991, Crezes and Lagendijk 1990) concluded that the ETCE analysis better matched
experimental data for both transient and steady-state heating. Given the difference in model
predictions and the uncertainty in their applicability, it is clear that further validation studies
are required.

Simulations indicate that reducing thermally significant vessel flow was the most efficient
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way to ensure a uniform temperature distribution. A reduction of flow by 90% of the original
flow for vessels of § ~ 0.6~1.4 mm resulted in high temperatures near the vessel (fizure 7).
All thermally significant vessels however cannot be occluded individually. More realistic
approaches would be to either partially occlude major vessels feeding the entire region or
to use vasoactive drugs to decrease blood flow to tumours. Both of these approaches have
been examined clinically with varying degrees of success (Jia er af 1993, Prescott et al
1992). Tourniquets can be used to occlude blood flow to the extremities resuliing in a
dramatic improvement in temperature homogeneity (Levin et al 1994). There are however
disadvantages in this approach. Selective cell killing attributed to the poor microenvironment
between tumours and normal tissues would be eliminated by occlusion, requiring heating
devices with excellent conformity.

The BHTE mode] appears to be better coupled to differences in the SAR distribution
than the ETCE model therefore increasing the SAR close to the large blood vessel produced
better heating patterns for the BHTE. For this approach to be clinically atilized the location
and flow rates of thermally significant vessels must be known. Potential methods to image
vessels and measure blood flow include Doppler ultrasound and MRI, although vessels with
diameters less than 1 mm are difficult to image ir vive. Methods that can locally increase
the SAR could be used to compensate for the cooling effects in those regions (provided the
BHTE is 2 more accurate model). The simulations indicated that small changes in blood flow
did not result in significant changes in the temperature profiles (figure 7). This allows some
flexibility in thermal modelling since the input flow data need not be exact. Using a modality
that deposits power in blood produced no measurable advantage for large vessels. Rapid
heating of tissues has been suggested by some anthors as a means to overcome the effects
of perfusion and large vessels (Billard et al 1990, Hunt et al 1991). Studies with simple
vessel models and geometries have demonstrated the advantages of rapid heating (Hunt ez
al 1991). Future studies with this more realistic model will include iransient temperature
calculations during rapid heating. Furthermore, implementation of three-dimensional codes
are required for modelling situations without cylindrical symmetry.

5. Conclusions

A computational model has been developed that does not utilize heat transfer coefficients
to calculate heat transfer to large vessels. Simulations using this model have shown that
the surrounding perfused tissue plays a significant role in modulating heat transfer to large
vessels, decreasing large vessel cooling for an increase in perfusion for both the ETCE and
BHTE models. A direct comparison of the two models using experimental data to relate
volumetric perfusion and effective conductivity has shown that the ETCE model predicts
more effective blood heating than the BHTE for equivalent perfusion values. Furthermore,
it was shown that optimal heating strategies near large vessels in perfused tissues depend
on the model of microvascular heat transfer. Localized deposits of heat are smoothed by
the enhanced conduction effects of the ETCE while amplified by the BHTE. As a resuit, even
with good spatial control of the SAR, the temperature distributions near large vessels may
be suboptimal if tissue microvascular heat transfer behaves as an effective conductivity,
especially for poorly perfused tissues. Reducing the volumetric flow through thermally
significant vessels appears to be the most promising strategy to reduce localized cooling of
large vessels.
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Appendix A

Analytical solutions to the conjugate problem as posed by equations (1) and (2} are
not available. Therefore, solutions of simplified problems must be sought. The Graetz
problem was used as a benchmark to compare analytical and computational solutions in
the blood domain (i.e the analytical solution of equation (1) for a constant vessel wall
temperature). The computational geometry was set to the problem specifications (e.g. ne
power deposition, constant wall temperature). Analytical expressions were taken from Shah
and London (1978). Figure 8(a) indicates good agreement between the radial profiles of the
computational and analytical solution. Inaccuracy is expected to be greatest in the entrance
region for the vessels, and thus for lower velocities (at a given depth) the error is greater.
Comparison of the tissue domain with analytical solutions without fluid flow also produced
excellent agreement (Kolios 1994). To evaluate the conjugate problem in which the fluid
and tissue domains are coupled, an analytical solution derived by Crezee and Lagendijk
(1992) was used as a benchmark, using Nu = 3.66 and a ratio of the radius at maximumnt
temperature versus radius of vessel (b/a) of 20. Figure 8(b) demonstrates a discrepancy
between the two solutions that may be attributed to the fact that the analytical solution does
not account for entrance effects or to computational errors due to the conductivity mismatch
at the tissue vessel boundary. The trends, however, of the two curves are similar and their
maximum deviation does not exceed 6% for a range the range of effective conductivities
examined.

Appendix B

Entrance effects enhance heat transfer to fluids that are not fully thermally developed. An
approximate error estimate for the average fiuid temperature when entrance effects are
omitted can be calculated for the (T) case. If entrance effects are excluded there is no axial
dependence of the radial fluid temperature profiles and the energy equation for the Graetz
problem becomes (equation (1))

. dh ’
mey—— = 247 B1
e gmry (B1)

where g is the heat flow to the vessel. The above equation has a solution for Tp(z = 0) =0,
wall temperature T,, and Nu = constant

Ty(z) = Ty {1 — exp[—2(Nu Pe z/ro)] } (B2)

where Pe is the Peclet number. Equation (B2) can be subtracted from the Graetz solution to
calculate the error from the omission of entrance effects (assuming a N number of 3.66).
Figures 9(a) and (b) display the difference between the Graetz solution and the solution
of (B2) plotted against the axial and dimensionless axial distance, respectively. Excluding
entrance effects underestimates the average blood temperature by 2 maximum of 12%, and
persists for significant distances along large vessels. The rate of heat transfer is greater in
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the entrance region since the radial temperature profiles are not fully developed. At larger
axial distances, the accumulative contribution from the entrance region is small compared
to the contribution from the rest of the vessel and thuos the solutions converge.
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