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Computer-Aided Theragnosis Based on Tumor
Volumetric Information in Breast Cancer

Mehrdad J. Gangeh™, Senior Member, |[EEE, Simon Liu, Hadi Tadayyon, and Gregory J. Czarnota

Abstract— Objective: A computer-assisted technology has
recently been proposed for the assessment of therapeutic
responses to neoadjuvant chemotherapy in patients with locally
advanced breast cancer (LABC). The system, however, extracted
features from individual scans in a tumor irrespective of its
relation to the other scans of the same patient, ignoring the
volumetric information. This study addresses this problem by
introducing a novel engineered texton-based method in order
to account for volumetric information in the design of textural
descriptors to represent tumor scans. Methods: A noninvasive
computer-aided-theragnosis (CAT) system was developed by
employing multiparametric QUS spectral and backscatter coeffi-
cient maps. The proceeding was composed of two subdictionaries:
one built on the “pretreatment” and another on “week N scans,
where N was 1, 4, or 8. The learned dictionary of each patient
was subsequently used to compute the model (histogram of
textons) for each scan of the patient. Advanced machine learning
techniques including a kernel-based dissimilarity measure to esti-
mate the distances between “pretreatment” and “mid-treatment”
scans as an indication of treatment effectiveness, learning from
imbalanced data, and supervised learning were subsequently
employed on the texton-based features. Results: The performance
of the CAT system was tested using statistical tests of significance
and leave-one-subject-out (LOSO) classification on 56 LABC
patients. The proposed texton-based CAT system indicated
significant differences in changes between the responding and
nonresponding patient populations and achieved high accuracy,
sensitivity, and specificity in discriminating between the two
patient groups early after the start of treatment, i.e., on weeks 1
and 4 of several months of treatment. Specifically, the CAT
system achieved the area under curve of 0.81, 0.83, and 0.85 on
weeks 1, 4, and 8, respectively. Conclusion: The proposed texton-
based CAT system accounted for the volumetric information
in “pretreatment” and “mid-treatment” scans of each patient.
It was demonstrated that this attribute of the CAT system could
boost its performance compared to the cases that the features
were extracted from solely individual scans.
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I. INTRODUCTION

ESPONSE of cancer therapy depends on many factors

that are specific to individual patients being treated.
Most of these factors center around responses to a treatment
regimen based on the patient’s genetic profile. Other factors
such as patient’s age and environment, tumor grade, and
stage also play important roles. Instead of following a single
regimen for all patients at the same stage of a specific
cancer, personalized medicine aims to tailor the most effective
treatment regimen as early as possible to patient-specific
factors.

Locally advanced breast cancer (LABC) is a large category
of breast cancer in which patients have the following: tumor
size greater than 5 cm with positive axillary lymph nodes,
and/or bulky, fixed axillary adenopathy, and may involve breast
skin and/or chest wall [1]. Given that LABC is often consid-
ered inoperable, neoadjuvant (preoperation) chemotherapy is
usually administered as the start to possible breast conserving
cancer treatment, a technique which was pioneered in the
setting of LABC [2], [3]. Since outcomes in terms of patient
survival are linked to tumor response to chemotherapy, it is
vital to periodically monitor the chemotherapy response and
make adjustments as quickly as possible.

Ideally, cancer treatment response monitoring at the
cellular level is based on imaging detectable structures
inside the tumors, consequently allowing the monitoring
of changes in tumor microstructure as cell death occurs.
A variety of modalities presently under investigation, namely,
positron emission tomography (PET) [4], magnetic resonance
imaging (MRI) [5], diffuse optical imaging (DOI) [6], and
ultrasound use the manifestations of physics phenomena that
can probe tumor structure and size. Although these methods
can probe tumor physiology, only size is used clinically to
assess response. Ultrasound is one of the most effective
modalities in terms of cost, imaging time, and portability.
In comparison, MRI and PET require large capital investment
and injection of exogenous agents, with the latter exposing
the patient to potentially high dose of ionizing radiation.
Lower resolution DOI has yet to gain clinical utilization.

The plausibility of using conventional-frequency ultra-
sound for response monitoring is due to fairly recent devel-
opments in quantitative ultrasound (QUS) methods. These
methods aim to capture acoustic scattering derived tumor
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properties, termed QUS biomarkers, which detect changes
in tumor microstructure early on during a course of treat-
ment (days as opposed to months as carried out in clinical
practice using standard imaging methods) [7]-[12]. Early
QUS imaging [13] studies used high frequency ultrasound
(>20 MHz) to obtain images of tumor response, but imaging
depth limitations have led to the rapid exploration of QUS
tumor monitoring using conventional mid- to low-frequency
ultrasound (1-20 MHZz) [8], [10], [12]. In QUS, the raw
radio frequency (RF) data is used instead of ultrasound
B-mode images, since the latter are image-processed and
log-compressed data sets that are unreliable in depicting
all frequency-dependant microstructure changes in the tumor
during cell death [7]. QUS methods are used to analyze
the entire frequency-dependent power spectrum, capturing the
effects of scattering microstructures more effectively than
B-mode intensity images. Even though B-mode imaging is a
useful convention for the visual observation of artifacts inside
patients and other abnormalities, QUS importantly provides
ultrasound machine-independent measurements of tumor char-
acteristics.

A. Computer-Aided Theragnosis

Computer-aided theragnosis (CAT) is an emerging tech-
nology to assist radiation oncologists to monitor and assess
therapeutic cancer responses early after the start of treatment
administration [14]. This computer-assisted system would
enable to noninvasively classify cancer patients as respon-
ders or nonresponders during the course of treatment. Medical
images acquired from functional imaging modalities, such as
QUS parametric maps, are used as inputs to CAT systems.
A CAT system typically needs to perform several tasks
including feature extraction from input images, measuring the
dissimilarities between the baseline (i.e., “pretreatment”) and
“mid-treatment” scans, and the classification of patients as
responders or nonresponders based on the measured dissimi-
larities (see Fig. 1). Ground-truth labels are determined based
on the ultimate clinical and histological analysis.

Recently, Gangeh et al. [14] proposed a CAT system
based on QUS methods at conventional frequencies for
the assessment of LABC patients’ responses to neoadjuvant
chemotherapy. However, one major shortcoming of the CAT
system developed in [14] is that the features have been
extracted from individual scans irrespective of their relations
to the other scans of the same patient. However, the hypothesis
is that including volumetric information into the design of the
feature extractor can potentially improve the performance of
the CAT system in classifying patient responses to treatment.
In particular, it is important to extract discriminative features
from multiple scans of a tumor considering their interrelations,
and also their relations to those scans, with which they will
eventually be compared, that is the “mid-treatment” scans.
On the other hand, it is known that the responses developed
in tumors as a result of treatment administration are often
heterogeneous [15], which suggests using textural features
to describe these responses [10], [14]. Therefore, in this
paper, textural features were extracted from the 2-D QUS
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Fig. 1. Schematic of the proposed CAT system used for the classification
of LABC patients as responders or nonresponders.
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parametric maps. Furthermore, in order to account for volu-
metric information, a texton-based approach—a data-driven
dictionary of primitive elements constructed on “patches”
extracted from input images—was adapted. One dictionary
of textons was built for each patient using all the “pretreat-
ment” and “mid-treatment” scans of that particular patient.
The dictionary, therefore, was representing the volumetric
information in all the scans of a patient. Subsequently, model
histograms of textons for the scans of the particular patient
were derived using the constructed dictionary as detailed
in Section I1. The texton-based method has led to the state-of-
the-art results in texture analysis on benchmark data sets [16]
and in other medical applications such as the classification of
lung parenchyma in CT images [17], [18]. The investigation
here was conducted to demonstrate the high performance of
a CAT system using the texton-based method to characterize
QUS parametric maps in the classification of tumor responses.

In the developed CAT system, the dissimilarities between
“pretreatment” scans as the baseline, and weeks 1, 4, and 8
“mid-treatment” scans were quantified for each patient and
subsequently submitted as inputs to a classifier. Differences
were calculated using a kernel-based dissimilarity measure
called the maximum mean discrepancy (MMD), which was
first proposed by Gretton et al. [19] to address two-sample
problem, i.e., to test whether two distributions p and q are
different on the basis of samples drawn from each of them.
In the application of cancer response monitoring, p and g are
the distributions of the data samples taken from “pretreatment”
and “mid-treatment” at a specific time interval after the start
of treatment, respectively. Due to the prevalence of responding
patients compared to nonresponding ones, a compensation
for learning from imbalanced data using random undersam-
pling [20] was also incorporated before the submission of the
dissimilarities to a classifier. Fig. 1 illustrates the schematic of
the complete CAT system developed in this paper.

B. Contributions

As a summary, the main contributions of this study are as
follows:
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1) the design and development of a complete noninvasive
CAT system based on QUS methods, which accounted
for the volumetric information in multiple scans of each
patient, by using a data-driven texture method;

2) a novel engineering texton-based method specifically
adapted to the application of cancer response monitoring
by building one dictionary/codebook per patient, and
learning the scan models based on the patient-specific
dictionary;

3) quantifying the different ultrasound characteristics of
responding tumors compared to nonresponding tumors
as early as week 1 in patients with LABC receiving
neoadjuvant chemotherapy when using the proposed
CAT system.

A preliminary version of this study has been reported as an
abstract in [21].

Il. METHODS
A. Image Analysis Using Texture Features

The viability of using QUS as a tumor response modality
is based upon the wealth of frequency information that is
contained in the raw RF images. The use of texture analysis
on parametric maps directly derived from raw RF signals takes
advantage of the texture features found in images derived from
all available frequency data. The texton approach [16], [22] is
considered a dictionary learning approach where the atoms
of the dictionary (textons) are used to define the texture
models, by the means of a histogram of textons. In contrast,
local binary patterns (LBPs) [23], which are considered
as another state-of-the-art method for texture analysis, rely
on predefined operators. An advantage of using data-driven
texture analysis over those based on parametric responses
to predefined operators is their adaptability to the type of
data set. In addition, the dictionary-based texton method can
compute the basis using all the scans in one patient, thereby
incorporating volumetric information into model features as
opposed to extracting features from individual scans using
texture methods such as the LBPs.

1) Feature Extraction Using Texton Approach: The main
concept of textons was originally introduced by Julesz [24]
to represent the elements of texture perception. The first
proposal for a complete texture classification system using
textons was proposed only 20 years later by Leung and
Malik [25]. The approach was subsequently further optimized
by several researchers as published in [16], [22], and [26],
resulting in the state-of-the-art results on benchmark texture
data sets as well as medical images [17]. Three major repre-
sentations associated with the texton approach consist of raw-
pixel representation [16], [22], filter banks [25], [26], and
the Markov random field [16], where the central pixel is
modeled using the neighboring pixels. The steps for the texton
approach, irrespective of representation used to describe local
image information, consist of learning a dictionary/codebook
of textons and the construction of a model for each image
using dictionary elements. These steps are described in this
section as the core principles to texton dictionary learning
approach in the context of cancer response monitoring.
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a) Congtruction of codebook: To construct the code-
book, patches of a specified size were extracted from each
image in the data set. These patches were converted into an
appropriate representation such as raw-pixel representation and
vectorized. The vector elements representing the patches were
then submitted to a clustering algorithm (e.g., k-means) to
cluster all the patch representations into a specified humber
of dictionary elements (the textons). In the context of cancer
response monitoring, for each patient, subdictionaries were
learned from the baseline (“pretreatment”) scans and “mid-
treatment” scans separately, and composed into a single
dictionary that was used for model learning for the patient’s
regions of interest (ROIs) in the next step. The learning
of dictionaries for each patient was separated due to the
patient-specific nature of ultrasound tumor data. The proposed
CAT system represents a response classification system based
upon differences between “pretreatment” and “mid-treatment”
scan planes. In order to assign a representative measure that
would quantify the difference between scans at a specific time
during treatment versus the “pretreatment” scans for a patient,
the use of only a single patient’s ROIs for dictionary learning
provides a metric to better represent a dissimilarity feature that
was independent of other individuals. If the dictionary was
constructed using clustering of all features from all patients,
the dissimilarity measure used to represent a patient would not
have been the characteristic of solely the individual, potentially
leading to a poorer classification performance.

b) Model learning: After constructing a codebook of
textons for each patient, the models (feature sets) were built for
the ROIs of each patient using the texton codebook constructed
in the previous step for that particular patient. To this end,
patches of the same size as in the codebook construction
step were extracted for analysis by sliding a window pixel-
by-pixel over each ROl of the patient. The patches were
subsequently converted into the appropriate representation
as used in the previous step and vectorized. Eventually,
a histogram of textons was computed, as the model for each
ROI, by comparing the extracted patches with the code-
book textons constructed for each corresponding patient and
finding the closest match using a similarity measure, such as
Euclidean distance, to update the corresponding bin in the
histogram of textons. Therefore, the model for an ROl was
a histogram where the bin labels corresponded to textons, and
the frequency of patches most similar to each of the textons
determined the shape of the histogram. Fig. 2(a) and (b)
illustrate the codebook construction and model learning steps
in the texton approach.

B. Maximum Mean Discrepancy

Cancer response monitoring involved categorizing the
patients into two categories: treatment responders and nonre-
sponders, thus classification was based upon measuring the
dissimilarity of each time group after chemotherapy with
the “pretreatment” scans. This choice of categorization was
the reason why the model histograms were not arbitrarily
submitted to train the classifier. Furthermore, a patient being
categorized as a responder or nonresponder depends on
the changes since starting treatment, thus submitting the
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Fig. 2. Outline of the texture analysis/machine learning algorithm using the texton approach. (a) Codebook construction. (b) Model learning for each ROI.

(c) Calculating the feature for each patient which represents the dissimilarity be

features of “pretreatment” and “mid-treatment” ROIs sepa-
rately will not prove useful in quantifying changes within
these two populations that is crucial for characterizing treat-
ment efficacy. Assigning a value for each patient that quan-
tifies the differences between the scans taken “pretreatment”
and “mid-treatment” is synonymous to identifying the treat-
ment effectiveness, i.e., the larger the distance, the more
success in treatment [7], [13]. Finding the optimal dissim-
ilarity measure that most accurately calculates the differences
between the two populations is, therefore, important in the
design of a CAT system.

One of the simplest and most straightforward methods
to measure the distance between the two distributions is to
calculate the distance between the cluster means using

d(p,q) = E(p)—E(q) M

where E is the expectation function, p and g are the two
distributions. The main drawback of the metric given in (1),
which is equivalent to Euclidean distance or 2 norm, is that
it only takes into account the first order statistics of the data
samples taken from p and q. Therefore, if the two distributions
have the same mean values, they cannot be discriminated
using (1) even if, e.g., their standard deviations (second-order
statistics) are different.

One approach to overcome this problem is to first map
the data to a higher dimensional feature space and then
compute (1) in the augmented feature space. By computing
the expectation function in the augmented feature space, higher
order statistics of the two distributions can effectively be taken
into account resulting in potentially enhanced discrimination.
This idea was effectively and efficiently implemented by
Gretton et al. [19], leading to a nonparametric (i.e., making no
assumption on the distributions p and q) kernel-based metric
in reproducing kernel Hilbert spaces called MMD.

To provide a formal description, let X = {xj}}_; and Y =
{yi}'%; be data samples drawn independently and identically
distributed (i.i.d.) from p and q, respectively. A feature
mapping function ¢ can be defined such that X p, X &

tween “pretreatment’ and “mid-treatment” ROls.

¢ (X), and similarly Y q,Y kA ¢ (Y), which maps the data
to a high-dimensional feature space. By computing (1) in this
space, a metric was computed with the following formulation:

MMD(¢, p,a) = E{¢(p)} — E{¢(a)} 2%
[E{IO(X) = oM [$(X) — d(M)]}]
= [E{p(X) ¢(X) —2¢(X) ¢(Y)
+0(Y) S(HE. )
In practice, to compute (2) using a finite number of data
samples X = {xj}.; and Y = {y;}i, taken from the two

distributions p and g, respectively, the following empirical
formulation for MMD can be used:

1
2

1 2
MMD(¢, X,Y) = sz(xi-xj)_% 2 k(xi,yj)
ij ij

1
=D )
i

where K(xi, Xj) = 0(xi), d(Xj) .

Intuitively, it is expected that empirical MMD will be small
when p = q and large when the two distributions are far apart.
It can be computed in quadratic time, i.e., for n + m data
samples the cost of computation is O((n + m)?) time, which
is reasonably low for a real-time computation. The empirical
MMD was adapted in this study to compute the dissimilarity
between the “pretreatment” and “mid-treatment” samples of
each patient at a specific time interval after the start of
treatment [illustrated in Fig. 2(c)].

C. Learning from Imbalanced Data and Classification

In machine learning, there are situations where the
number of data samples is not equally distributed across
different classes. For example, most clinical data sets naturally
include many more data samples in the healthy class than
the cancerous or abnormal class. Likewise, in this study, the
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method, resulted in the strongest performance amongst other
feature-distance combinations, particularly on week 1 using
the MBF spectral parametric map and on weeks 4 and 8 using
the AAC BSC parameter. The improvement was specifically
significant compared to the LBP-MMD approach on week 1,
and the GLCM-MMD method on all weeks, which indicates
the advantage of using a data-driven texture method over
classical texture methods such as GLCM, and over texture
methods relying on predefined operators such as LBPs. More-
over, the performance was significantly improved compared
with the 2 norm, which demonstrated the importance of
using kernel-based dissimilarity measures in calculating the
distances between the “pretreatment” and “mid-treatment”
scans, which was in line with our previous finding [14].
The significant improvement achieved by the proposed CAT
system on weeks 1 and 4 validated its potential for assessing
the effectiveness of treatment regimens in the early stages of
neoadjuvant chemotherapy for LABC.

The earliest investigations on tumor classification using
QUS biomarkers were able to successfully display the differ-
ences that arise in spectral parameters during cell death by
using the mean of the parameters to represent an entire
ROI [40], [41]. While the use of the mean of parametric
maps does provide a means to interpret the status of the
tumor cell over time, textural properties of parametric maps
have shown a higher correlation to changes in the tumor
tissue [10]. Specifically, texture properties derived from the
GLCM, for example, contrast and homogeneity, have been
demonstrated to have a higher performance than the “Meanint”
in response classification studies especially early on during a
course of treatment [10], [36]. The reason for the improved
classification performance when using more complex texture
methods versus the simple mean method, may be due to
the additional consideration of structures (manifested to pixel
intensities) next to each other within a sufficiently sized
neighborhood. This study confirmed the previous findings on a
larger cohort of LABC patient data and using more advanced
textural features.

The use of machine learning algorithms has also been
accounted for in computer-aided diagnosis, showing high
performance in CT [17], [42], [43] and MRI images [44].
We provided a novel study on tumor response classification
of QUS parametric maps using a texton learning approach,
presenting a comparison of feature extraction from intrinsic
textural features versus predefined texture patterns. Predefined
patterns including LBP have shown promising performance
in image analysis; however, in our study, they did not perform
as well as the raw-pixel intensity texton approach. One main
reason could be due to the fact that the texton-based method is
a dictionary-based approach, constructing one dictionary on all
the scans of a patient, which accounts for relative information
of scans (and hence, volumetric information of tumors) in the
subsequent feature models extraction from individual scans.
The LBPs, in contrast, extract feature models from each scan
using predefined generic binary operators (not learned from the
data), hence, not accounting for the volumetric information
in model construction. Another explanation could be due to
the fact that the LBPs are, by design, invariant to gray-scale
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intensities. While this can be an attractive attribute in some
applications, where the designed system should be invariant to
changes in illumination, in cancer response monitoring using
QUS methods, gray-scale intensity conveys important informa-
tion. For example, in MBF parametric map, it represents the
ultrasound backscatter power, which increases with different
modalities of cell death [7]. Therefore, excluding this informa-
tion can deteriorate the performance of a CAT system. Texton-
based methods based on raw-pixel representation, however,
can account for this information and intrinsically lead to
better classification results compared to the LBPs. While this
can be fixed for the LBPs by, e.g., combining them with
the histograms of intensity as shown in [14], it adds to the
complexity of the approach, whereas textons do not need this
additional step in feature design.

The novel engineered texton method was used here for
the application of cancer response monitoring to build one
dictionary of textons for each patient at each time interval
during treatment. There are several major advantages for
building the dictionary using the proposed method: first, since
in a CAT system comparison between the scans from “pretreat-
ment” and “mid-treatment” is one major component, building
the dictionary in the aforementioned manner makes it more
representative of the two scans types, and subsequently leads
to better classification results. Second, the approach learns
the dictionary irrespective of whether the patients are in the
training or tests sets. Therefore, as new patients are coming,
the dictionary can easily be updated by building a dictionary
merely on the scans from this patient. This significantly saves
the computation time for building the dictionary as there is no
need to update the dictionary for all patients when the train
and test sets are changed, e.g., due to cross-validation or due
to adding new patients.

The Texton-based method is a dictionary learning and sparse
representation [45] method specifically tailored to texture
images. However, in the texton-based method, each patch in a
texture image is represented by only one single texton in the
dictionary (the closest match). This is a kind of sparse repre-
sentation, in which only one atom in the dictionary is active per
patch. However, this might not be an ideal model and using
other dictionary learning and sparse representation methods
that can include more than one dictionary atom in modeling
each patch in texture image can potentially improve the clas-
sification performance [46]. Especially, supervised dictionary
learning methods [47], [48] that learn one subdictionary per
“pretreatment” and another subdictionary per “mid-treatment”
scans are of interest in this application, and research in this
direction is currently underway in our group.

In this paper, one parametric map was applied to the
proposed CAT system at a time. However, it is certainly
possible to use complementary information in the parametric
maps by combining them in the proposed pipeline. Combining
the parametric maps can be performed at several different
stages: 1) at feature level; 2) after the computation of the
dissimilarity metrics; and 3) at decision level by employing
multiple classifier systems (MCSs) [49]. At feature level,
in addition, combining can be accomplished in many different
ways, e.g., by simply feature fusion or by using advanced
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multiview learning [50] approaches such as multiview super-
vised dictionary learning [51]. At the decision level, there
are many structures for MCSs as well as different combining
rules such as majority voting, mean, product, min, or max
combining rules. Moreover, there will be a question on how
many different parametric maps should be combined, e.g.,
whether we just combine the AAC and MBF or include more
spectral and BSC parametric maps. Combining parametric
maps will be addressed in our future research.

In conclusion, the proposed CAT system provides promise
that QUS methods in conjunction with data-driven texture
analysis and advanced machine learning techniques to spur
advances in cancer treatment in the near future by providing a
means for the early detection of cell death. These methods play
an integral role in association with other imaging modalities
such as MRI and PET as treatment becomes more personalized
and moves to the molecular level.
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