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ABSTRACT 

The destruction of blood vessels is a commonly used cancer therapeutic strategy. Bleeding consequently follows and 
leads to the accumulation of blood in the interstitium. Photoacoustic (PA) imaging is well positioned to detect 
bleeding due to its sensitivity to hemoglobin. After treatment vascular disruption can occur within just a few hours, 
which leads to bleeding which might be detected using PA to assess therapeutic effectiveness. Deep microvessels 
cannot typically be resolved using acoustic-resolution PA. However, spectral analysis of PA signals may still permit 
assessment of bleeding. This paper introduces a theoretical model to simulate the PA signals from disrupted vessels 
using a fractal model. The fractal model uses bifurcated-cylinder bases to represent vascular trees. Vessels have 
circular absorption cross-sections. To mimic bleeding from blood vessels, the diffusion of hemoglobin from 
microvessels was simulated. The PA signals were computed and in the simulations were detected using a linear array 
transducer (30 MHz center frequency) for four different vascular trees (at 256 axial spatial locations/tree). The 
Fourier Transform of each beamformed PA signal was computed and the power spectra were fitted to a straight line 
within the -6 dB bandwidth of the receiving transducer. When comparing the power spectra before and after 
simulated bleeding, the spectral slope and midband fit (MBF) parameters decreased by 0.12 dB/MHz and 2.12 dB, 
while the y-intercept did not change after 1 hour of simulated bleeding. The results suggest that spectral PA analysis 
is sensitive to changes in the concentration and spatial distribution of hemoglobin in tissue, and changes due to 
bleeding can be detected without the need to resolve individual vessels. The simulations support the applicability of 
PA imaging in cancer treatment monitoring by detecting microvessel disruption. 
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1. INTRODUCTION 

Photoacoustic (PA) imaging has been proposed to monitor tumour response to various types of cancer therapies [1], 
[2]. A common response to these therapies can involve bleeding of tumour microvessels. The ability to detect and 
quantify the occurrence of bleeding can have an important role for PA in cancer therapy.  

One of such emerging treatments involves ultrasound activated microbubbles [3]. The microbubbles target 
microvessels resulting in the escape of hemoglobin to the surrounding tissues [4], [5]. Microbubble shell disruption 
induces damage to the endothelial cells lining the vessels. The outcome is vessel disruption followed by tumour cell 
death and extensive haemorrhagic necrosis within hours of treatment delivery [4], [6]. Coupling microbubbles with 
radiation therapy has been shown to create a synergistic effect to induce tumour cell death.  
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PA imaging is a non-invasive modality for imaging deep into the tissues (> 1 cm) at high resolutions of less than 200 
µm. Most studies in PA imaging focuses on analyzing the amplitude of the generated PA signal [7]. However, deep 
microvessels cannot typically be resolved using acoustic-resolution PA. Nevertheless, spectral analysis of the PA 
signals may still permit assessment of bleeding through the spectral analysis of the PA signals. Spectral analysis can 
involve both optical spectral analysis (for the identification of chromophores), and spectral analysis of the 
photoacoustically generated ultrasound signals detected. This paper focuses on the later.  

The potential of spectral analysis of PA signals has not been fully investigated, especially for cancer treatment 
monitoring. Utilizing spectral analysis can improve the sensitivity of PA imaging in detecting changes on scales that 
cannot be spatially resolved, due to the changes in the frequency content of the PA signals generated that are the 
result of changes in the size and spatial distribution of that dominant optical absorbing structures. This is analogous 
to how such techniques are used in quantitative ultrasound [8], [9].  

PA spectral analysis is used to acquire system independent information about the optically absorbing source [10], 
[11]. The information can be correlated to the size and concentration of the optical absorbers in the tissue, which 
are dominated by the red blood cells in the blood. In order to extract spectral parameters, the time-domain PA 
signals are transformed to the frequency-domain. The system dependencies are removed from the PA power spectra 
using a reference power spectrum. The slope, y-intercept and midband fit (MBF) parameters are extracted from the 
line of best fit and are correlated to microstructures in the tissues. The advantages of PA spectral analysis have been 
demonstrated in assessing tumours, liver conditions and osteoporotic patients [12]–[17].   

Simulations of vascular disruption resulting in hemorrhaging were performed, as described in this paper. To our 
knowledge, such analysis has not been done before. To simulate bleeding from tumour vessels, modelling of a 
tumour vasculature was performed using a vascular tree model. The bases of the model are composed of cylinders 
which bifurcate into two daughter vessels [18]–[22]. The length, diameter and branching angle of the daughter 
vessels is controlled by selecting different parameters as shown in Figure 1 (a). These parameters can be altered to 
represent different vessel structures within the body. Modeling bleeding as a result of microbubble collapse can be 
achieved by using Fick’s law of diffusion, as it has been used in modeling the extravasation of blood outside the 
vessels [23]–[25]. These simulations can provide an insight into the potential of using PA spectral analysis used to 
assess the efficacy of cancer therapy. This could potentially improve outcome and reduce the reoccurrence rate of 
tumours by providing timely feedback on the effectiveness of the drug / therapeutic approach.  

 

2. METHODOLOGY 

The vascular tree structure of tumour vessels was simulated using a fractal model with a cylindrical basis [18]–[22]. 
The extravasation of blood outside the vessels due to microbubble collapse was simulated using Fick’s law of 
diffusion, as it has been used to model bleeding [23]–[25]. The PA signals of an omni-directional point detector were 
generated from the solution to the PA wave equation using a Green’s function approach. The directivity and 
sensitivity to detector specific frequencies was accounted for. The simulated signals were used to generate 2D PA 
images using a delay-and-sum beamforming approach. Spectral analysis was performed by extracting the spectral 
slope, MBF and y-intercept, as described elsewhere [9].  

2.1.  Vascular tree modeling 

The vascular tree to represent tumour vessels is generated using a fractal model. In this paper, the parameters were 
selected to model chaotic vessels similar to vessels found in tumours (Figure 1 (a)). The simulations were performed 
in three dimensions. The third branch with a diameter of 150 µm and length of 1 mm was simulated at the origin, 
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leading up to the 12th branch with a diameter of approximately 14 µm and a length of 0.35 mm. These values were 
chosen to mimic measured tumour vasculatures of mammary carcinoma [26].  

The size of the daughter fragments is determined by the bifurcation index (ߚ). The bifurcation index is used to 
correlate the left and right daughter segment through the equation below: 

= ߚ                                                                                                      ௅                                                                     Equation 1ܦ / ோܦ 

where the ߚ value ranges between  0 < > ߚ   1. The left daughter segment (ܦ௅) is assumed to be larger than right 
daughter segment (ܦோ) to represent the diameter asymmetry. Solving for ܦ௅  and ܦோ  can be achieved using the 
hemodynamic energy minimizing constrains. ߚ was fixed to a value of 0.95 for this simulation. The distance factor is 
used (݇) is used to correlate the length (ܮ) of the daughter and parent segments. The distance factor usually has a 
values from 0.7 to 0.9 and is set to 0.9 for this simulation. The last parameter controls the branching angle of the 
daughter segments with respect to the parent segment. Since the simulations are done in 3D, there are two angles 
for each daughter segment. The first angle is called the branching orientation (߮) and ranges from 0o to 360o while 
the other angle is called the branching angle (ߠ) and ranges from 25o to 140o. These values are used to simulate 
chaotic vasculature to represent tumour vessels [18], [19].   

2.2.  PA signal generation 

When short laser pulses irradiate optically absorbing objects, the absorbers emit PA waves that carry their geometric 
information. The PA signal can be computed for a defined laser profile ܫ(࢘,  and the absorption coefficient map of (ݐ
the tissue ߤ௔(࢘, ,࢘)ܪ The product of these two parameters results in the heating function .(ݐ  The heating function .(ݐ
was used to compute the shape of the generated PA signal. The forward solution of the PA wave equation was 
computed based on the free-space Green’s function:                                                              ݌(࢘, (ݐ = ஻ସగ஼೛ ∭ ቚௗయ௥ᇲఋு൫࢘ᇲ,௧൯|௥ି௥ᇲ|ఋ௧ᇲ ቚ௧ᇲୀ௧ିหೝషೝᇲห೎                                                            Equation 2 

where ܤ is the thermal coefficient of the volume expansion, ܥ௣ is the specific heat capacity of the tissue at constant 
pressure, ܿ is the speed of ultrasound in water set at 1540 m/s, ݎ is the location of the point detector and ݎ’ is the 
location of the absorber as demonstrated in Figure 1 (b). The above equation is used to simulate the point detector 
with small aperture due to the heat source ܪ(࢘,  The equation applies spherical integration with a radius .(ݐ
determined by the acoustic time of flight. The constant ܥߨ4/ܤ௣ was set to be 1. 

The heating function ܪ(࢘,  was computed for individual vessels and generated pressure signals were then (ݐ
superimposed for the entire tree. The model assumes uniform illumination of the laser light with ݎ) ܪ௕௟௢௢ௗ, (ݐ ,௧௜௦௦௨௘ݎ) ܪ <<   in other words, the absorption of blood vessels is significantly larger than the absorption of the ;(ݐ
surrounding tissues resulting in:                                                                      ܪ (࢘, (ݐ =  ൜1,           ݅݊ ݐℎ݁ ݐ݋               ,0,݈݁ݏݏ݁ݒℎ݁݁ݏ݅ݓݎ.                                                            Equation 3 

each cylindrical vessel has defined radius, start position and end position specified by the fractal tree geometry.  

2.3. Diffusion of blood outside microvessels 

To model vascular disruption, the diffusion of extravasated blood outside the vessels was modeled using Fick’s Laws 
[23]. Fick’s Law correlates the diffusion flux to the concentration gradient. The rate of change of the concentration 
at a point in space is proportional to the second derivative of concentration in space with constant diffusion 
coefficient (݀).  
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The diffused blood (݊) at location ݔ and time ݐ for a vessel boundary located at position 0 with initial concentration 
of ݊௢ was computed using the one-dimension solution to the Fick’s Law equation:                                                                         ݊ (ݔ, (ݐ = ݊௢݂݁ܿݎ ൬ ௫ଶඥௗಹ௧൰                                                                       Equation 4 

where ݀ு is the diffusion of hemoglobin with a value of 0.0005 mm2/h, erfc is the complementary error function. 
Cylindrical symmetry was applied to account for the whole vessel. The equation was computed for a single 
microvessel 10 µm in diameter and 2 mm in length at time intervals ݐ =  0, 0.1, 0.5, and 1.0 hours. This resulted in 
full width half maxima of the hemoglobin concentration of 10, 24, 40, 52 µm, respectively. These intervals were 
chosen because preliminary studies from our group suggest that vascular hemorrhaging occurs early after the 
administration of treatments that target blood vessels [27]. 

 

Figure 1: In (a) is an illustration of the fractal tree bases and the parameters for modeling the vascular tree. The parent segment 
bifurcates into two daughter segments with different diameters and lengths. (b) A schematic representation of the detected 
photoacoustic signal from an absorber located at ݎ’ and a point source located at ݎ.   

The concept of diffusion of blood outside the vessels was applied to the vascular tree model. The diffusion of blood 
was simulated using Fick’s Law on vessels smaller than 30 µm in diameter after 0.5 hours of vessel disruption. This 
was done to account for the effect of a treatment on the microvessels. The generated PA signals of a vascular tree 
simulated with extravasated blood were compared to a vascular trees without extravasated blood. The comparison 
includes the generation of B-mode images and spectral analysis of the generated PA signals (Equation 2). 

2.4. Signal Simulation and beamforming 

The simulated PA signals were generated by taking into account several features of a high frequency commercial 
ultrasound transducer (Fujifilm-Visual Sonics, Toronto, Canada). It has the capability to image tumours at a depth 
more than 1 cm with 45 µm lateral spatial resolution. The transducer was simulated for frequency ranges between 
15 to 45 MHz (the -6 dB bandwidth) using a Butterworth bandpass filter of order 3 which was applied to the 
generated PA signals. The PA signals were computed for all 256 elements 14.08 mm in length and 0.055 mm in pitch. 
The distance of the transducer to the original parent vessel segment was set to be 11 mm which is the approximate 
focus of the laser beam.  
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The signals were beamformed using a conventional delay and sum method for every 64 elements. The directivity of 
the transducer ߙ was accounted for using the equation below:                                                                     (ߠ)ߙ = ܴ݁ሾିߣܦߨ)ܿ݊݅ܬଵ(ߠ) ݊݅ݏሿ                                                                    Equation 5 

where ߠ is the angle to the vector line, ܦ is the diameter of a single element in the transducer and ߣ is the wavelength 
of the central frequency of the transducer (approximately 50 µm for the speed of sound of 1540 m/s). Finally, 
apodization of the transducer was applied using a Hamming filter. The generated B-mode images of the vasculature 
tree with and without extravasated blood were then visually compared. 

2.5. Spectral analysis 

Spectral analysis was applied to the generated PA signals. The spectral analysis was applied by windowing the 
simulated PA signals with a Hann window of size 500 µm. The power spectrum of the windowed signals was 
computed and fitted to a straight line between the ultrasound frequencies of 15 to 45 MHz. The parameters 
calculated from the fitted line are the spectral slope, MBF and y-intercept. These parameters were compared for 
parameters derived from the vascular tree with extravasated blood and the vascular tree without extravasated 
blood.     

 

3. RESULTS AND DISCUSSION: 
3.1. Simulated PA signals of single microvessels 

A single microvessel 10 µm in diameter and 2 mm in length was modeled. The PA signal at a point detector 11 mm 
away from the microvessel source was computed using Equation 2. Hemoglobin diffusion into the interstitium was 
modeled using Equation 4 to account for microvessel damage due to microbubbles. Spatial and frequency analysis 
of generated PA signals from the single microvessel are presented in Figure 2. Figure 2 (a) is a schematic 
representation of the geometry of a simulated microvessel. Figure 2 (b) shows images of the cross-section of two 
simulated microvessels before vessel disruption and 1 hour after microvessel disruption. This demonstrates the 
changes in the distribution and content of hemoglobin after bleeding. For bleeding, there is a gradient change in the 
hemoglobin content once it enters the tissues. In contrast, before bleeding there is a sharp change in the hemoglobin 
content outside the vessel. This will have an impact in the generated PA signals, as the PA signals are correlated to 
the spatial distribution of the absorbers.   

The effect of a vessel’s bleeding on the spatial and frequency content of generated PA signals is presented in Figure 
2 (c)-(e). Figure 2 (c) shows the distribution of hemoglobin before (0 hour) and at different time intervals after 
bleeding (0.1, 0.5 and 1.0 hour). This figure demonstrates the distribution of hemoglobin molecules outside the 
tissues as time progresses after vessel disruption. Figure 2 (d) shows the simulated PA signals in the spatial domain 
(time domain multiplied by the speed of sound in water at 37oC). It can be noted that as time progressed after the 
vessel damage, the amplitude of the PA signals decreased while the spatial extract of the PA signals increased. The 
decrease in the amplitude of generated PA signals is due to introducing a gradient change in the hemoglobin content. 
The spatial span of the PA signals increased with time progression after bleeding due to the extend of hemoglobin 
to a larger area within the interstitium.  

The changes of the PA signals in the spatial domain also produce changes in the power spectra of the signals as 
shown in Figure 2 (e). Within the bandwidth of 15 – 45 MHz of the transducers we have used in our experiments, 
the power spectra exhibit significant changes as a result of hemoglobin diffusion into the interstitium [27]. As 
bleeding progresses, the slope of the power spectra will decrease and the y-intercept will increase. The next step 
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was to model the PA signals from the entire vascular tree and test if these changes can be detected in the simulated 
images, and with the proposed spectral techniques.     

 

Figure 2: (a) A schematic representation of the simulated vessel geometry. (b) A schematic representation of the cross section of 
the vessel in (a) before bleeding and after 1 hour of bleeding simulated using Fick’s law. (c) Line profile of the blood distribution, 
generated PA signal in (d) spatial and (e) frequency domains at different time points after vessel disruption.  

3.2. Modeling PA signals of vasculature before and after bleeding 

An example of simulated tumour vasculatures is presented in Figure 3 (a). It can be noted that the tumour 
vasculatures are chaotic and dense as it is the case for tumour vasculatures [28]. The location of the transducer is 
denoted by the blue dots for 256 elements. The beamformed images for the selected bandwidth of 15 – 45 MHz are 
presented in Figure 3 (b) and (c) for vascular trees without bleeding and 0.5 hour after bleeding. The results in Figure 
3 demonstrate the challenge of detecting the bleeding from non-resolvable microvessels in ultrasound resolved PA 
imaging as the size of the vessels are smaller than the system resolution of 50 µm. Visual inspection of the B-mode 
images illustrates that it is hard to distinguish between the images generated from the bleeding and non-bleeding 
vessels.  

Spatial and frequency domain signals of simulated PA signals generated from the vascular tree model are presented 
in Figure 4. The time-domain PA signals simulated before bleeding and 0.5 hours after bleeding are shown in (a) for 
non band-limited signals and (b) band-limited signals. Again, it is difficult to distinguish between the two cases by 
visual inspection of the PA signals. Figure 4 (c) presents the average power spectra (of 256 elements for four different 
trees) and the line best fitted before bleeding and 0.5 hour after bleeding. The line fitted to the power spectra 
demonstrates a change between the two groups and these changes are more pronounced at higher frequencies.  
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Figure 3: (a) A schematic representation of the simulated vascular tree. The blue dots represent the location of the simulated 
point source detector. (b) and (c) The beamformed image of the vascular tree in (a) without microvessels bleeding and 0.5 hour 
after microvessels bleeding respectively.  

 

Figure 4: Representative PA signals acquired from simulating vascular tree without microvessel bleeding and 0.5 hours after 
microvessels bleeding of non band-limited (a) and band-limited signals (15 – 45 MHz) (d). (c) The average power spectra of four 
different vascular trees and the average line best fitted with its standard deviation.       

Comparison of the selected spectral analysis parameters between three simulated groups are presented in Figure 5. 
These three groups represent the analysis of PA signals done before bleeding, 0.5 hour after bleeding and 1 hour 
after bleeding. The spectral slope is presented to the left of Figure 5, the slope decreasing significantly as early as 
0.5 hour of bleeding (p < 0.01). The spectral slope is correlated to the size of the source [8], [11], [29], [30]. A decrease 
in the spectral slope at these frequencies correlates to an increase in the size of the PA source. This is due to the 
diffusion of hemoglobin into the interstitium that generates an overall larger PA source. The decrease in spectral 
slope following vessel destruction has been observed experimentally [27]. The middle bar plotted in Figure 5 
compares the y-intercept parameter; the y-intercept parameter is correlated to the concentration of the optical 
absorbers  [8], [29], [30]. The decrease in the y-intercept parameter as bleeding progressed. However, these changes 
are not significant when modeling an entire vascular tree. To the right of Figure 5 is the MBF, which is a dependent 
parameter that combines the effect of the spectral slope and y-intercept. The results demonstrate a significant 
decrease in the MBF parameter 0.5 hour after bleeding (p < 0.01).  

Spectral analysis of simulated PA signals could be used to differentiated between vasculatures before bleeding and 
0.5 hours after bleeding through analysis of the changes in the spectral slope. The decrease in the spectral slope 
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could be correlated to the effective increase of the microvessels size after bleeding occurs. The MBF could also be 
used to detect microvessel bleeding, and it is an independent variable to the spectral slope.   

The study introduces the technique of detecting vessel bleeding based on spectral parameters of PA signals. There 
may be other changes that can be detected, which can be confirmed by further simulations, which can be done to 
account for the distribution of multiple chromophores. For example as red blood cells escape the vessels, the 
concentration of deoxyhemoglobin and methemoglobin rises due to changes in the surrounding environment the 
[23], [31]. These changes will result in different PA signals at different optical wavelengths. The chromophores 
distribution as a result of bleeding can be modeled using the vascular tree and its effect on generated PA signals can 
be tested for different wavelengths. Finally, the simulations can be compared to experimental results of tumour 
mouse model treated with microbubbles.   

 

Figure 5: Spectral parameters acquired from vascular tree model simulation. The calculated parameters are the slope, y-intercept 
and MBF for the three groups of simulated vascular trees to represent an intact tumour vasculature, 0.5 hour after bleeding and 
1 hour after bleeding. *: A star indicates statistical significance compared to the without bleeding group.  

 

4. CONCLUSION 

This study demonstrates the capability of PA spectral analysis in detecting structural changes due to bleeding at the 
micron scale. According to the simulations performed, microvessel bleeding can be detected by quantifying changes 
in the spectral slope and MBF of the power spectra in ultrasound resolution PA. This demonstrates a potential for 
the use of PA spectral analysis for cancer treatment monitoring, and for treatments that target the vasculature. The 
early clinical feedback that could be potentially obtained by detection and quantification of microvessel bleeding 
may result in a significant improvement in treatment outcome. It may also result in a reduction in the reoccurrence 
rate of tumours through feedback provided on the efficacy of the treatment, and through using bleeding as a 
biomarker of tumour response. 
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