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In wide-field pulsed photoacoustics, a nearly instantaneous source of electromagnetic energy is

applied uniformly to an absorbing medium to create an acoustic wave. In this work, an exact

solution is derived for the photoacoustic wave originating from a finite-length solid cylindrical

source in terms of known analytic functions involving elliptic integrals of canonical form. The

solution is compared with the output of a finite-element simulation.
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I. INTRODUCTION

We derive an exact solution of the photoacoustic wave

originating from a finite-length homogeneous solid circularly

cylindrical source in terms of known analytic functions

involving elliptic integrals of canonical form.

Our interest in this derivation originates in modeling

photoacoustic waves produced from blood vessels in a vas-

cular network. At near-infrared (NIR) optical wavelengths,

blood is the strongest optical absorber in tissue.1 A single

blood vessel can be modeled as a finite-length solid cylinder.

To model a full vascular network, the waves of many adja-

cent branching vessels can be added together in superposi-

tion. Our research deals with the geometrical arrangement of

vessels in healthy and in abnormal biological tissues.2,3 For

instance, the vessels in healthy tissue are arranged in a

highly organized manner, whereas in diseases like cancer,

the vessels lose the ability to organize according to their

usual branching patterns.4 Hence, understanding photoacous-

tic waves produced by individual vascular segments and

how the superposition of waves interact in three-dimensional

(3D) vascular networks of different morphology is important

in the monitoring, prevention, and treatment of disease.

It is known that no closed form solution exists in terms

of basic mathematical functions5 for the photoacoustic wave

from a finite-length cylindrical source.6,7 The solution to the

problem is elliptic. The mathematical problem described in

this paper was earlier studied by Remillard6 for modeling

the acoustic propagation of thunder caused by a columnar

bolt of lightening in air. Remillard used numerical methods

and an approximation of the solution for the finite-length

cylindrical case was put forward involving a Rayleigh

integral. Cylindrical geometries have historically been stud-

ied in photoacoustics7–10 typically focusing on infinite-

length geometry or numerical solutions of a Rayleigh

integral. In other fields, finite-length cylinders may also be

used to model submarines, airplanes, trees in a forest or

microscopic structures such as bacteria and nanoparticles. In

electromagnetics, finite-length cylinders can be used to

model elements of a cylindrical wire antenna;11–13 however,

that problem is different from the photoacoustic problem

because most of the current travels to the surface of the

cylinder and the voltage potential is more akin to the acous-

tic velocity potential rather than the acoustic pressure.

Acoustic radiation and scattering14–17 have also been studied

for finite-length cylinders, but the general problem also deals

with modes of vibration and the problem usually involves an

incident acoustic wave.

In this paper, the exact solution is reduced to terms that

include elliptic integrals which can be computed efficiently

and analyzed. Our implementation of computing the final

form derived in this paper makes use of fast algorithms for

evaluating elliptic integrals in canonical form. The mathe-

matical form of the solution in terms of elliptic integrals

may also permit construction of better and more accurate

approximations for the exact solution.

Our approach is similar to Lamarche et al.18 where the

exact solution for the volume of intersection between a solid

sphere and a solid infinite-length cylinder were reduced into

terms of elliptic integrals for computing atomic cross-

sections, where high precision was required. Lamarche et al.
were able to transform his problem to a form that could be

reduced to elliptic integrals. In our case, the surface area of

intersection is used, rather than the volume of intersection,

to represent a spherical acoustic wavefront. We also take

additional steps to account for a finite-length that are possi-

ble when this approach is used.

To the best of our knowledge, the exact solution for a

pressure wave resulting from a finite-length cylindrical

source distribution has not elsewhere been solved in terms of

known analytic functions.

II. PHOTOACOUSTIC WAVES

When a brief electromagnetic pulse illuminates a me-

dium with a spatially distributed energy fluence UðxÞ, the

energy absorbed by the medium at position x is
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HðxÞ ¼ laðxÞUðxÞ; (1)

where laðxÞ is the absorption profile of the medium.

It is assumed that the pulse duration is short enough

so that there will be thermoelastic stress confinement,
where thermal conduction and stress propagation are neg-

ligible. Under this condition, a source of initial excess

pressure will be created in the medium at t ¼ t0 ¼ 0

according to

p0 xð Þ ¼ b xð Þc2 xð Þ
Cp xð Þ H xð Þ; (2)

where bðxÞ is the thermal expansion coefficient, c is the

speed of sound and CpðxÞ is the specific heat capacity. If

the tissue is illuminated equally everywhere, such that UðxÞ
is constant, this is called the wide-field photoacoustic

assumption.

When the speed of sound in the medium is constant and

the pulse is instantaneous, photoacoustic wave propagation

is governed by the differential equation

@2

@t2
� c2r2

� �
p x; tð Þ ¼ p0 xð Þ @

@t
d tð Þ; (3)

where pðx; tÞ is pressure and dðtÞ is the Dirac impulse

function.

Solving Eq. (3) under basic assumptions yields the

forward solution for pðx; tÞ so that pressure at any time and

position is1,19,20

p x; tð Þ ¼
1

c2

@

@t

ð
g x� x0; tð Þp0 x0ð Þdx0; (4a)

where

g x; tð Þ ¼
d kxk � ctð Þ

4pkxk : (4b)

When the initial pressure p0ðxÞ from Eq. (2) is due to a

homogeneous pressure source from an absorbing object in a

non-absorbing background, it can be written as

p0ðxÞ ¼
Pconstant; if x is on the object;

0; if x is on the backgound;

(
(5)

where Pconstant is a constant. Accordingly, Eq. (4) can be

rewritten as

p x; tð Þ ¼ Pconstant

1

4pc2

@

@t

A x; ctð Þ
kxk ; (6)

where

A x; ctð Þ ¼
1

Pconstant

ð
kx�x0k¼ct

p0 x0ð Þdx0: (7)

Equation (7) represents the area of intersection between the

object defined in Eq. (5) and a spherical wavefront centered

at x. For the rest of this paper, we assume Pconstant ¼ 1.

III. DERIVATION FOR THE EXACT SOLUTION OF AN
FINITE-LENGTH CYLINDRICAL PHOTOACOUSTIC
SOURCE IN TERMS OF ELLIPTIC INTEGRALS

This derivation starts by following an approach similar

to by Lamarche et al.,18 where the exact solution for the

volume of intersection between a solid sphere and a solid

infinite-length cylinder were reduced into terms of elliptic

integrals for computing atomic cross-sections. In our work,

the photoacoustic pressure pðx; tÞ is obtained from Eq. (6),

where the surface area of intersection is used instead of the

volume of intersection. We also take additional steps to

account for a finite-length cylinder instead of an infinite

cylinder.

In Sec. III A, the exact area of intersection of a wave-

front with an infinite cylinder is derived. In Sec. III B, this is

converted to photoacoustic pressure. In Sec. III C, terms

resulting from the ends of the finite-length cylinder are taken

into account. In Sec. III D, it is shown how calculating

pressure can be performed when the finite-length cylinder is

at an arbitrary position and orientation.

A. Area of intersection of a sphere and a cylinder

We start with the derivation for the exact area of inter-

section between a sphere and an infinitely long cylinder.

The sphere corresponds to the spherical wavefront of radius

r ¼ ct centered at point O as shown in Fig. 1. The axis of the

cylinder as shown is centered at point B. The radius of the

cylinder is indicated by R. Without loss of generality, we can

consider the case where the axis of the cylinder is perpendic-

ular to the page. The area of intersection is defined as a func-

tion f ðx; yÞ over the region S which is shaded in Fig. 1. From

calculus, the surface area of a function f ðx; yÞ over any

general region S is

ð
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @f

@x

� �2

þ @f

@y

� �2
s

dx dy: (8)

From Eq. (8), the area of intersection between a spherical

wavefront and an infinite-length cylinder is derived. Let b be

FIG. 1. Intersection of a spherical wavefront and a cylinder. The axis of the

cylinder is perpendicular to the page and is centered at point B. The radius

of the cylinder is R. The wavefront is centered at point O and has radius r.

The region S defining where the intersection occurs is shaded.
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the minimum distance from the origin O to the longitudinal

axis of the cylinder B. The cylinder is defined by

ðx� bÞ2 þ y2 < R: (9)

The sphere x2 þ y2 þ z2 ¼ r2, representing the wavefront,

can be written as

f ðx; yÞ ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2 � y2

p
: (10)

For use in Eq. (8), the partial derivatives of Eq. (10) are

@f x; yð Þ
@x

¼ 7
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2 � y2
p ;

@f x; yð Þ
@y

¼ 7
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2 � y2
p : (11)

By substituting Eq. (11) into Eq. (8), the total area above and

below region S is

A ¼ 2

ð
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @f

@x

� �2

þ @f

@y

� �2
s

dx dy

¼ 2

ð
S

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2 � y2

p dx dy:

Switching to polar coordinates with q ¼ x2 þ y2 and tan h
¼ y=x, this becomes

A ¼ 2

ð
S

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � q2

p qdq dh: (12)

The region S is defined in polar coordinates. As shown

in Fig. 1, in the variable h, the region S is bounded from

point S1 to point S2, and in the variable q, it is bounded from

S3 to S4. The angle at point S1 is called b, and at S2 the angle

is �b. When b 6¼ 0, the region S has four cases as illustrated

in Fig. 2, depending if b > R and/or if r > Rþ b. Figure 1 is

drawn according to the case shown in Fig. 2(b). As shown in

Figs. 2(a) and 2(b), when b > R the entire region S is

bounded from q ¼ jb� Rj to r and by h ¼ �b to b. As

shown in Figs. 2(c) and 2(d), when b� R < 0, a circular

section of area is missing from the polar integration region.

This missing section has the form of a fifth case for the

region S where b ¼ 0. If b ¼ 0 then S is a circular region

centered at the origin and A can be directly solved as

A r; R; 0ð Þ ¼ 2

ð2p

0

ða

0

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � q2

p qdqdh

¼ 4parcsin
a

r

� �
; (13)

where a is minðr; RÞ. Hence, the missing area that must be

accounted for when b� R < 0 is

A0 ¼

0; R � b;

4rp arcsin
R� b

r

� �
; 0 < R� b < r;

2p2r; otherwise:

8>><
>>: (14)

This is because the remaining portion of region S when

b� R < 0 is also bounded from q ¼ jb� Rj to r and by

h ¼ �b to b and can be solved by accounting for A0.

Proceeding with the solution to Eq. (12), the angle b
defining S can be found from the cosine law as

b ¼ arccos½ðq2 þ b2 � R2Þ=2bq�. By symmetry, the area is

double that of the region bounded from h ¼ 0 to b. Hence,

the surface area is

2

ðr

jb�Rj

ðb

0

rqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � q2

p dh dq

¼
ðr

jb�Rj

rqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � q2

p arccos
q2 þ b2 � R2

2bq

 !
dq; (15)

which can be rewritten using integration by parts as A1 þ A2

where

A1 ¼ �2 arccos
q2 þ b2 � R2

2bq

 !
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � q2

p" #min r; bþRð Þ

q¼jb�Rj

and

A2¼
ðmin r;bþRð Þ

jb�Rj

�2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�q2

p
q2�b2þR2
� �

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2� Rþbð Þ2Þð R�bð Þ2�q2Þ

q dq:

Hence, the total area of intersection above region S is

A ¼ A0 þ A1 þ A2: (16)

The term A1 reduces to

A1 ¼ �2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðR� bÞ2

q
; 0 < R� b < r;

0; otherwise:

8<
: (17)

FIG. 2. Intersections of sphere and cylinder. There are four ways that a

sphere of radius r can intersect an infinite cylinder of radius R. The sphere is

shown centered at the origin. The distance from the center of the sphere to

the axis of the cylinder is called b.
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To solve the term A2, we substitute l :¼ q2 so that

dl ¼ 2qdq. Thus,

A2 ¼
ðmin r2; bþRð Þ2ð Þ

b�Rð Þ2
�r

ffiffiffiffiffiffiffiffiffiffiffiffi
r2�l

p
l� b2þR2
� �

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� Rþ bð Þ2Þð R� bð Þ2�lÞ

q dl:

Defining k1 :¼ b2�R2, k2 :¼ðb�RÞ2 and k3 :¼ðbþRÞ2
this becomes

A2 ¼ 2

ðmin r2; k3ð Þ

k2

l� k1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 r2 � lð Þ

p
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� k2ð Þ k3 � lð Þ

p dl: (18)

A2 can now be solved by using the tabulated formulas for

elliptic integrals21 or with the help of a symbolic math tool-

box (we used Maple22) as

A2¼

0; r�jb�Rj;

2r k1þr2�k3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
k3�k2

p K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�r2

k2�k3

s0@
1
A

�2r k2�k3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
k3�k2

p E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�k2

k3�k2

s0@
1
A

� 2k1r3

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3�k2

p P
k2�r2

k2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�k2

k3�k2

s0
@

1
A;

jb�Rj<r and r�Rþb;

2rk1ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�k2

p K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3�k2

r2�k2

r !
�2r k2�r2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

r2�k2

p E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3�k2

r2�k2

r !

� 2r3k1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�k2

p P
k2�k3

k2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3�k2

r2�k2

r !
;

otherwise:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The functions KðjÞ, EðjÞ, and Pð�; jÞ are the complete

elliptic integrals of the first, second and third kinds in

Legendre canonical form. They are defined from their

respective incomplete elliptic integrals Fðz; jÞ, Eðz; jÞ, and

Pðz; �; jÞ by

K jð Þ ¼ F 1; jð Þ; F z; jð Þ ¼
ðz

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2s2
p ds;

E jð Þ ¼ E 1; jð Þ; E z; jð Þ ¼
ðz

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2s2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ds;

P �; jð Þ ¼ P 1; �; jð Þ;

P z; �; jð Þ ¼
ðz

0

1

1� �s2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2s2
p ds:

B. Photoacoustic pressure from an infinite cylinder

Using Eqs. (6) and (16), the photoacoustic pressure for

the infinite cylinder can be written as

P ¼ 1

4pc2

@

@t

A

r

� �
r¼ct

: (19)

Substituting Eq. (16) into Eq. (19), we find

P ¼ 1

4pc2

@

@t

A0 þ A1 þ A2

r

� �
r¼ct

¼ P0 þ P1 þ P2; (20)

where

P0 ¼

ffiffiffiffiffi
k2

p

c2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 � k2

p ; 0 < R� b < ct;

0; otherwise;

8<
:

P1 ¼
� t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 � k2

p ; 0 < R� b < ct;

0; otherwise;

8<
:

P2¼

0; ct�jR�bj;

t

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2�k2

p K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2�k2

k3�k2

s0@
1
A

0
@

�k1

k2

P
k2�k3

k2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2�k2

k3�k2

s0
@

1
A
1
A;

jb�Rj� ct and; ct�Rþb;

t

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k3

p K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2�k2

k3�k2

s0@
1
A

0
@

�k1

k2

P
k2�c2t2

k2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2�k2

k3�k2

s0
@

1
A
1
A; otherwise:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

What has been presented so far in Eq. (20) is an alter-

nate derivation for the known exact solution of an infinite-

length cylindrical photoacoustic source.7–10 However when

the cylinder is finite-length, then region S is no longer the

same as in Eq. (15). In Sec. III C, we describe how to

account for the finite-length case.

C. Photoacoustic pressure from a finite-length
cylinder

To find the exact area (or pressure), an excess amount

DA (or DP) must be subtracted from the infinite-length case

of Eq. (20) to account for the ends of the cylinder. The ge-

ometry is shown in Figs. 3 and 4 where h1 and h2 indicate

the start and end positions of the cylinder on its coordinate

axis. The exact area Aexactðr; R; b; h1; h2Þ and pressure

Pexactðt; R; b; h1; h2Þ are

1678 J. Acoust. Soc. Am., Vol. 137, No. 4, April 2015 J. Zalev and M. C. Kolios: Finite-length cylindrical source solution



Aexact ¼ A� DAðh1Þ � DAð�h2Þ; (21a)

Pexact ¼ P� DPðh1Þ � DPð�h2Þ; (21b)

where

DA hð Þ ¼

0; d2 � h;

A�; d1 < h < d2;

A

2
; �d1 � h � d1;

A

2
� A�; �d2 � h � �d1;

A; h � �d2;

8>>>>>>>>>>><
>>>>>>>>>>>:

DP hð Þ ¼

0; d2 � h;

P�; d1 < h < d2;

P

2
; �d1 � h � d1;

P

2
� P�; �d2 � h � �d1;

P; h � �d2;

8>>>>>>>>>><
>>>>>>>>>>:

and

A� ¼ A�0 þ A�1 þ A�2;

P� ¼ P�0 þ P�1 þ P�2;

with d1 ¼ maxðrealf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðbþ RÞ2

q
g; 0Þ and d2

¼ minðrealf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðb� RÞ2

q
g; rÞ, as shown in Fig. 3. To

calculate A� and P�, the integration in Eq. (15) is performed

from q ¼ jb� Rj to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2
p

.

The terms A�0, A�1, and A�2 are given by

A�0 ¼ 4pr arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� h2
p

r

� �
; 0 < R� b <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� h2
p

;

A0; otherwise:

8><
>:

FIG. 3. Surface area of sphere-cylinder intersection; h1 and h2 define the

start and end of the cylinder at a position on its axis; d1 and d2 are the posi-

tions on the cylinder axis that the sphere intersects.

FIG. 4. The shaded surface area must

be subtracted from the calculation. It

must be done separately for each cylin-

der end. The variables are the same as

in Fig. 3.
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A�1 ¼ A1 þ �2hr arccos
r2 � h2 þ k1

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2 þ r2
p

 !
; jb� Rj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2
p

;

0; otherwise:

8><
>:

A�2 ¼ 2

ðr2�h2

k2

l� k1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 r2 � lð Þ

p
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� k2ð Þ k3 � lð Þ

p dl

¼ 2k1rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � k2

p F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2 � k2

k3 � k2

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � k2

r2 � k2

r0
@

1
Aþ 2r r2 � k2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � k2

p E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2 � k2

k3 � k2

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � k2

r2 � k2

r0
@

1
A

� 2r3k1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � k2

p P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2 � k2

k3 � k2

s
;

k2 � k3

k2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � k2

r2 � k2

r0
@

1
A:

The terms P�0, P�1, and P�2 are given by

P�0 ¼
h

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 � h2
p

c2
; 0 < R� b <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 � h2
p

;

P0; otherwise:

8><
>:

P�1 ¼ P1 þ
ht h2 � c2t2 þ k1ð Þ

2p h2 � c2t2ð Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � h2 � k3ð Þ h2 � c2t2 þ k2ð Þ
p ; jb� Rj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 � h2
p

; :

0; otherwise:

8>><
>>:

P�2 ¼
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2� k2

p F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2� c2t2þ k2

k2� k3

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3� k2

c2t2� k2

r0
@

1
A� k1t

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2� k2

p P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2� c2t2þ k2

k2� k3

s
;
k2� k3

k2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3� k2

c2t2� k2

r0
@

1
A

þ ht h2� c2t2þ k1ð Þ
2p h2� c2t2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2� h2� k3ð Þ h2� c2t2þ k2ð Þ

p :

D. Arbitrarily positioned finite cylinder

The pressure pðx; tÞ can be found for an arbitrarily posi-

tioned cylinder. If the ends of the cylinder is located at posi-

tions q2 and q1, with length L ¼ kq2 � q1k, the start and end

heights of the cylinder are23

h1¼

jðq2�q1Þ � ðq1�xÞj
L

; ðq2�q1Þ � ðq1�xÞ> L2;

jðq2�q1Þ � ðq2�xÞj
L

; ðq2�q1Þ � ðq1�xÞ< 0;

�jðq2�q1Þ � ðq1�xÞj
L

; otherwise;

8>>>>>><
>>>>>>:

(22a)

and

h2 ¼

jðq2�q1Þ � ðq2� xÞj
L

; ðq2�q1Þ � ðq1� xÞ> L2;

jðq2�q1Þ � ðq1� xÞj
L

; ðq2�q1Þ � ðq1� xÞ< 0;

jðq2�q1Þ � ðq2� xÞj
L

; otherwise:

8>>>>>>><
>>>>>>>:

(22b)
FIG. 5. (Color online) Pressure waveforms from cylindrical source. The out-

put from the FEM solution, and the exact solution.
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The distance from x to the cylinder axis is

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kq1 � xk2 � ððq2 � q1Þ � ðq1 � xÞÞ2=L2

q
: (23)

The exact photoacoustic pressure of the finite-length cylin-

der is found using Eq. (21b) as

pðx; tÞ ¼ Pexactðt; R; b; h1; h2Þ; (24)

where R is the radius of the cylinder, and h1 ¼ h1ðxÞ and

h2 ¼ h2ðxÞ and b ¼ bðxÞ are defined above.

IV. FINITE ELEMENT SIMULATION

A finite element simulation is established as a reference

for comparison against Eq. (24) and also to observe the

acoustic wave as it propagates outward from an initial source

distribution. The simulations are performed using the

COMSOL24 software package. It has a built in module for

simulating acoustic wave propagation.

For our research purposes, performing a full 3D simula-

tion on a large vascular model would not be feasible since

the finite element method (FEM) requires large computa-

tional resources in terms of both memory and processing

power. This is one reason why Eq. (24) was solved. Our

FIG. 6. (Color online) FEM pressure

wave simulation from cylindrical pho-

toacoustic source. L¼ 2 mm,

R¼ 0.1 mm. The cylinder is centered

about the vertical axis of the figure.

The wavefront propagates outward in

all directions with axial symmetry.
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other work involves simulating a hierarchical 3D tree of

cylindrical segments using a Green’s function based

method.2 Software using a pseudo-spectral k-space method

for simulating photo-acoustic objects of arbitrary geometry

on a 3D grid could also have been used.25 Numerical integra-

tion using Maple was also found to be in agreement with our

implementation of Eq. (24). For small geometries, such as a

single finite-length cylinder, the FEM is practical. In situa-

tions where there is a suitable symmetry, the 3D finite

element computation can be reduced to a 2D computation.

COMSOL supports a special mode for models with axial

symmetry, which is the case for a cylindrical object.

The model is implemented as a 2D transient acoustic

wave simulation using axial symmetry. For initial condi-

tions, the absorbing cylinder is given an initial pressure to

represent the effect of instantaneous heating immediately

following the instantaneous pulse of energy deposited in the

tissue. For the region inside the cylinder, the initial pressure

is Pconstant kPa. For region outside the cylinder in the back-

ground, the initial pressure is 0 kPa. The medium, both inside

and outside of the cylinder, is assumed to have speed of

sound 1500 m/s and density 1000 kg=m3. The outer bound-

ary of the simulation is given absorbing boundary condi-

tions. The simulation is performed on a dual core 2.00 GHz

Intel Pentium processor. After meshing, there were 69 572

elements and 139 727 degrees-of-freedom. The average

element size was 6� 10�5 mm2 and the maximum to mini-

mum element area ratio was 8� 10�4. The simulation used

489 MB of memory and completed in approximately 87 min.

The results are plotted in Figs. 5 and 6. Figure 5 represents

time domain waveforms for the finite element and exact sol-

utions taken at two sampling positions. The finite element

simulation is noisy and acted as a low-pass filter on the pres-

sure signal, whereas the exact solution is noise free and the

sharp negative peak of the exact solution is preserved. In

Figs. 6(a)–6(f) snapshots of the wavefield at different times

are shown. The simulation is axially symmetric, and the 2D

slice shown can be revolved about the vertical axis of the fig-

ure corresponding to the axis of the cylinder. The wavefront

shown propagates outward in all axially symmetric dimen-

sions. The effects from the finite-cylinder ends is seen as a

pressure disturbance at the tail end of the pressure signal in

Fig. 5. The radiating wave propagating from the cylinder

ends is seen in Fig. 6. When z ¼ 0:0 mm, the effects from

the ends combine into a single disturbance because the wave

from each end reaches the transducer at the same time.

V. CONCLUSION

We have derived the exact solution of a photoacoustic

wave resulting from the homogeneous heating of an arbitra-

rily positioned finite-length cylindrical source in terms of

elliptic integrals. The result can take advantage of fast nu-

merical methods for evaluating elliptic integrals in canonical

form. Furthermore, this form may allow better approxima-

tions for the solution to be developed. The result has been

compared against a finite element simulation and shown to

be in agreement.
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