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Calculation of Intravascular Signal in Dynamic
Contrast Enhanced-MRI Using Adaptive Complex
Independent Component Analysis

Hatef Mehrabian*, Rajiv Chopra, and Anne L. Martel

Abstract—Assessing tumor response to therapy is a crucial
step in personalized treatments. Pharmacokinetic (PK) modeling
provides quantitative information about tumor perfusion and
vascular permeability that are associated with prognostic fac-
tors. A fundamental step in most PK analyses is calculating the
signal that is generated in the tumor vasculature. This signal is
usually inseparable from the extravascular extracellular signal.
It was shown previously using in vivo and phantom experiments
that independent component analysis (ICA) is capable of calcu-
lating the intravascular time-intensity curve in dynamic contrast
enhanced (DCE)-MRI. A novel adaptive complex independent
component analysis (AC-ICA) technique is developed in this study
to calculate the intravascular time-intensity curve and separate
this signal from the DCE-MR images of tumors. The use of the
complex-valued DCE-MRI images rather than the commonly used
magnitude images satisfied the fundamental assumption of ICA,
i.e., linear mixing of the sources. Using an adaptive cost function
in ICA through estimating the probability distribution of the
tumor vasculature at each iteration resulted in a more robust and
accurate separation algorithm. The AC-ICA algorithm provided
a better estimate for the intravascular time-intensity curve than
the previous ICA-based method.

A simulation study was also developed in this study to real-
istically simulate DCE-MRI data of a leaky tissue mimicking
phantom. The passage of the MR contrast agent through the
leaky phantom was modeled with finite element analysis using
a diffusion model. Once the distribution of the contrast agent
in the imaging field of view was calculated, DCE-MRI data was
generated by solving the Bloch equation for each voxel at each
time point.

The intravascular time-intensity curve calculation results were
compared to the previously proposed ICA-based intravascular
time-intensity curve calculation method that applied ICA to
the magnitude of the DCE-MRI data (Mag-ICA) using both
simulated and experimental tissue mimicking phantoms. The
AC-ICA demonstrated superior performance compared to the
Mag-ICA method. AC-ICA provided more accurate estimate of
intravascular time-intensity curve, having smaller error between
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the calculated and actual intravascular time-intensity curves
compared to the Mag-ICA.

Furthermore, it showed higher robustness in dealing with
datasets with different resolution by providing smaller variation
between the results of each datasets and having smaller differ-
ence between the intravascular time-intensity curves of various
resolutions. Thus, AC-ICA has the potential to be used as the
intravascular time-intensity curve calculation method in PK
analysis and could lead to more accurate PK analysis for tumors.

Index Terms—Adaptive complex independent component anal-
ysis (AC-ICA), arterial input function (AIF), intravascular signal
intensity, pharmacokinetic modeling.

[. INTRODUCTION

ERSONALIZED therapy is becoming more viable as our
understanding of cancer biology and treatment options
improve. Considering the high cost and specificity of these
treatments, selection of the proper patient population and rapid
assessment of their therapeutic response is of upmost impor-
tance [1], [2] and has to be improved. However, currently used
approaches to assess tumor response to therapy, i.e., tumor
size measurement through response evaluation criteria in solid
tumors (RECIST) and serum marker evaluation, have several
limitations. Many advanced treatments, although effective,
do not affect the tumor size and most tumors do not produce
enough biomarkers to be used in their evaluation. Thus, there
is increasing interest in developing novel metrics using func-
tional imaging techniques such as dynamic contrast enhanced
(DCE)-MRI or positron emission tomography (PET) [2], [3].
Dynamic contrast enhanced-MR imaging of a tumor followed
by pharmacokinetic (PK) modeling to assess and quantify con-
trast agent kinetics is one of the main approaches to assess tumor
response to therapy. Such a DCE-MRI study involves an in-
travenous injection of a bolus of a low molecular weight con-
trast agent, e.g., Gadolinium (Gd)-DTPA, followed by repeated
imaging of the tumor area to track the passage of the bolus
through the tumor vasculature. The PK model provides a way
to quantify the leakage of the contrast agent from the tumor
vasculature or plasma volume into the extravascular extracel-
lular space (EES). Such a model provides information about the
tumor permeability and blood volume that have been shown to
be related to prognostic factors [4] and thus can be used in eval-
uation of anti-angiogenic and anti-vascular therapies [5].
There are several PK models such as the Tofts and the ex-
tended Tofts models that assume instantaneous mixing of the
blood plasma and contrast agent as it arrives in the tumor, and
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the adiabatic approximation to the tissue homogeneity (AATH)
model that assumes the contrast concentration in the EES is de-
fined as a function of transit time and the distance along the cap-
illary [6], [7]. Determining the contrast agent concentration in
the intravascular space is a fundamental step in most PK models
of tumor tissues [8]. Due to the heterogeneity of tumor vascula-
ture, low resolution of clinical images and partial volume effect,
there is no direct method to separate the signal that is generated
in the tumor vasculature from the EES signal and thus it is ex-
tremely difficult to determine the intravascular contrast concen-
tration in the tumor [9].

Thus, it is common to estimate the intravascular contrast con-
centration using an arterial input function (AIF). This AIF is
measured using the concentration in a major artery that is ad-
jacent to the tumor and is feeding the tumor [10]. Other AIF
approximation methods include, using a standard AIF [11], ref-
erence tissue based [12] or population average AIF [13]. Since
all of these approaches try to approximate the AIF outside of
the tumor, they introduce error to the system and its correc-
tion steps make the system of equations complicated. For in-
stance these methods, either assume that there is no delay be-
tween the arrival of contrast agent in the AIF and in the tumor,
or they introduce a delay parameter in the model making the
system of equations more complex. The standard AIF can be
assumed to take a bi-exponential form; alternatively a popula-
tion average AIF can be used. Both of these methods fail to ac-
count for the intra-subject variability of the AIF. The reference
tissue method approximates the AIF in a normal tissue (usually
muscle tissue) by assuming that the PK model parameters of the
normal tissue are known from the literature [12]. It was shown
in [14] that these parameters vary between subjects and using
literature values for normal tissue does not provide accurate re-
sults. In studies where the AIF is calculated in a major artery it
is assumed that the selected artery is feeding the tumor and that
no other artery is supplying blood to the tumor [13], [15]. Such
an AIF is unable to capture the early phases of the passage of
the contrast agent through the tumor vasculature and thus a ref-
erence region based correction method has been introduced in
[14]. The effect of adding more parameters to the PK model was
studied in [16] and it was concluded that although these param-
eters make the model more accurate in theory, due to increased
complexity and instability of the system of equations, they are
unable to improve the results of PK analysis in practice.

Each voxel in an MR image is partially occupied by blood
vessels or the intravascular space and the rest is the extravas-
cular structures. Consequently, the MR signal in each voxel is
the sum of the signal that is generated in the intravascular space
and the signal from the extravascular space. The low molecular
weight contrast agents used in DCE-MRI studies do not enter
the cells, and thus the signal can be assumed to be generated
in the intravascular and the extravascular extracellular spaces.
In previous work [15], [17] we introduced an independent com-
ponent analysis (ICA)-based method to calculate intravascular
time-intensity curve in DCE-MRI studies inside the tumor. This
method assumed that the intravascular and extravascular extra-
cellular components of the DCE-MRI data of the tumor are spa-
tially independent and are linearly mixed to form the MR im-
ages in each voxel. This method was shown to have good per-
formance in calculating the intravascular time-intensity curve

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 4, APRIL 2013

and separating it from the data and its results were validated
against tissue-mimicking phantoms and contrast enhanced ul-
trasound imaging of the tumor vasculature in vivo. The method
performed well in spite of the fact that the linear mixture as-
sumption, which is a fundamental assumption for ICA, was vi-
olated since processing was carried out on the magnitude of
the MRI data. The original MRI signal in each voxel that is a
linear combination of the intravascular and extravascular ex-
tracellular signals is complex-valued. However, the signals of
these two spaces (intravascular and extravascular extracellular
spaces) usually are not in-phase and their signals will partially
cancel each other. Thus the magnitude of the sum of their signals
would not be equal to the sum of the magnitudes of the signal of
the two spaces, which violates the linearity assumption in ICA.
This problem was tackled by using a small echo time (TE) to
minimize intra-voxel de-phasing of the spins.

In addition, in that work [15], [17], the probability distri-
bution functions of the intravascular and extravascular extra-
cellular spaces were not estimated and, as is common in ICA
algorithms, a fixed cost function which does not account for
the intra-subject variability between the spatial distributions of
tumor vasculature was used instead.

A more rigorous way of addressing these problems would
be to analyze the complex data rather than the magnitude data.
An adaptive complex ICA (AC-ICA) method is introduced
here which uses the complex-valued MRI data where the
linear mixture assumption of ICA is satisfied. The proposed
AC-ICA method also determines the ICA cost function based
on the distribution of the vasculature through an expectation
maximization (EM) procedure by performing online density
estimation at each iteration. The performance of the AC-ICA
method is evaluated using simulation and experimental
tissue-mimicking phantoms and the results are compared to
the previously introduced ICA-based method in [15], [17], that
applied ICA to the magnitude of the DCE-MRI data and used a
fixed cost function (Mag-ICA).

The structure of this paper is as follows: the theory and
methods section briefly explains the Mag-ICA method. It also
explains the complex ICA approach that is used in the AC-ICA
followed by the expectation maximization procedure that is
used to estimate the distribution of the tumor vasculature and
find its proper cost function. The simulation phantom is then
explained and the Bloch equation simulation that is used to gen-
erate the simulated DCE-MRI dataset is described. This section
also describes the experimental tissue mimicking phantom that
was constructed and explains its DCE-MRI data acquisition
procedure. The results section gives the results of applying both
AC-ICA and Mag-ICA methods to simulation and experimental
phantom data. It also analyzes the robustness of both methods
and the reproducibility of their results. The discussions section
explains the main challenges of the AC-ICA method and its
main differences with Mag-ICA.

II. THEORY AND METHODS

A. Independent Component Analysis

ICA is a statistical signal processing method that attempts
to split a dataset into its underlying features, assuming these
features are statistically independent and without assuming any
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knowledge of the mixing coefficients [ 18]. In this article we will
use capital bold letter for 2-D matrices, lowercase bold letters
for column vectors, capital or lowercase letters (not bold) for
scalars and, bold italic letters for functions. When the features
are mixed linearly, the ICA model is expressed as

Z =AS

where Z = [z1,22,...,2n]|" represents the time-series dataset
which in this study is the complex-valued DCE-MRI dataset
of a tumor or a tissue-mimicking phantom (observed mixtures)
and N is the number of time points in the DCE-MRI sequence,
S = [s1,82,..., SM]T is a matrix containing the M structures
that are known as independent components or ICs (usually M
< N) and in this study these are the images representing the in-
travascular and extravascular extracellular spaces of the tumor
tissue. Although we assume that there are only two spaces in
our model (intravascular and extravascular extracellular), since
ICA makes no assumption about the spatial distribution of these
spaces, it might split each space into several components. In
practice more than two ICs are required to achieve accurate sep-
aration. A € RN*M is the mixing matrix whose columns repre-
sent the contrast uptake curves of the intravascular and extravas-
cular extracellular compartments. Having the observed mixture
signals Z, the ICA method attempts to estimate the underlying
features (independent components) S and the mixing matrix A.
This is achieved by finding an unmixing matrix W € RM*™
and estimating the IC matrix Y = [y1,y2. ..., ym|” such that

Y =WZ

where the rows of Y are statistically independent and have zero
mean, and unit variance, i.e., E{YYH } = I, where H is Her-
mitian transform and E{.} is the expectation operator. The IC’s
can be recovered up to an arbitrary scaling and permutation [18].

Phase Shifting of DCE-MRI Data for ICA: Assume a 2-D
matrix Q € RN~*Ne where N, represents the number of rows
and N represents the number of columns of Q, is being used as
the input to Fourier transform (FT) to generate the MRI data. FT
assumes that the zero frequency point is the initial point of the
signal located at the first row and the first column of Q. However
in MRI data acquisition in k-space, the zero frequency point is
stored at the center of the k-space (located at the row N, /2 and
column N./2) and then higher frequency elements are stored
around this center point which is not the arrangement that is
expected by FT.

This rearrangement of the k-space values corresponds to dis-
placement of data located at row n and column m with N, /2
rows and N, /2 columns in k-space. This is equivalent to a phase
shift ofeizml(Nf/Q)/Nr ei27rm(NC /2)/Ne — (7 l)ner which trans-
lates to a sign alteration of every other point. This phase shift has
to be corrected by changing the sign of every other point in com-
plex DCE-MRI data. The phase shift has no effect when using
the magnitude of the MRI data but affects the analysis when the
complex data is being used. If this phase shift is not corrected
prior to the application of ICA, then the values of neighboring
voxels cancel out, in particular when computing the mean and
covariance of the signal.

Magnitude ICA (Mag-ICA): According to the central limit
theorem, the distribution of a sum of independent random vari-
ables with finite support probability density functions (pdf) tends

towards a Gaussian distribution [19]. Thus, by maximizing the
non-Gaussianity of the estimated components, the independent
components can be identified. In an information theoretic frame-
work, one way of measuring non-Gaussianity of a real-valued
random variable (y) is to measure its Negentropy [18] given by

Jnegentropy(Y) = H(ygauss) - H(y)

where H(y) = —E{log(p(y))} is the differential entropy of
v, p(.) is the pdf, and ygauss is a Gaussian random variable with
the same variance as y . Since the probability distributions of the
ICs are not known, it is common in ICA algorithms to maximize
the Negentropy by maximizing the following equation:

Jnegentropy(Y) = E{G(Y)}

where G(.) is a nonquadratic nonlinearity function. The
Mag-ICA method used skewness function as its nonlinearity
G(y) = y?°, and used a Newton like method to maximize the
Negentropy [15], [17].

Complex ICA: The Negentropy for the complex-valued
random variable was defined using the joint distribution of its
real and imaginary parts, i.e., p(z, z’) in [20]

Jnegentropy(ZRa ZI) = H(ZR ZI ) - H(ZR: ZI)

gauss’ “gauss

where z” and z are the real and imaginary parts of z and
H(z" z") = —E{log(p(z®,27))} is the bi-variate entropy.
The complex Negentropy is always positive, and for a fixed
covariance of [z, z!]T, the bi-variate entropy has its largest
value for [z .., 2l ..]. Thus, maximum non-Gaussianity is
achieved by minimizing the bi-variate entropy (H(z%?,z)).
Assuming p(z%,z!) = cxp(—G(z)), the cost function for
complex maximization of negentropy (CMN) is given by [20]

Jncgontropy(w) = E{G(y)}

where y = w#Z, and G(y) = |C(y)|* in which C(.) is the
nonlinearity function for ICA. The expression for the maximiza-
tion is given as [20]

Woptimum = argHiax {E { |C(WHZ)|2}} .

llwil=1

This constrained optimization is solved using a quasi-Newton
method [20]. The Lagrangian function is

L(W7 )‘) = Jnegentropy(w) + )\(WHW -1

where A is the Lagrange multiplier. Using the complex
Newton update defined in [21], the optimization update rule
becomes [20]

Wit — (@ _ (H,; - /\I)—l(V*J + )\w(i)) (1)

where H ; and Vs are the complex Hessian and the complex
gradient matrices of J, respectively. The fixed point update for
w was derived from (1) in [20] as the following equation:

Wiy = —E {C*(wg)Z)c’(wg)Z)z}
+E {0’(wg)2)0’*(wg)Z)} W)
+E{ZZT\E {C*(wg)Z)C”(wg)Z)} wj,

where C*, C’, and C” are the complex conjugate, the first
derivative and the second derivative of C, respectively.
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B. Adaptive Complex ICA (AC-ICA)

The optimal non-Gaussianity in an information theo-
retic framework is the logarithm of the joint probability
density function of the source that is being estimated, i.c.,
Goptimal(z) = —log(p(z”,2")). However, the joint proba-
bility density of the source is not known in ICA and thus has
to be estimated.

The generalized Gaussian distribution (GGD) is given as

B lyl?
9(y;o, 8) = mexl) ( of ) ()

where I’(.) is the gamma function defined as I'(x) =
fooo e~ 't*~1dt, and 3 and « are the model parameters. The
GGD distribution covers a wide range of distributions [22]
and has been used in modeling various physical phenomena
[23]-[25].

GGD was introduced in [22] as a cost function for ICA. We
have observed that distribution of the real and imaginary parts
of the MR images of each compartment (source) fits well into
the GGD formulation. Assuming the linear mixture model holds
for the MRI data in complex domain we modeled the MR image
as a sum of a number of functions with GGD distributions.

Using an expectation maximization framework (explained in
the next section) the parameters of these GGD distributions
are found at each iteration and the GGD distribution with the
highest membership probability is used to derive the nonlin-
earity in our ICA algorithm. Substituting the parameters («, 3)
of the selected GGD distribution in (2) and using the relation-
ship between the ICA nonlinearity and the pdf of the sources,
ie., p(zf, z!) = exp(—|C(2)]?), the nonllnearlty is defined as

o= (%)

(0%

[S])e

C. Expectation Maximization

We developed an expectation maximization framework to
calculate the parameters of the adaptive probability distribu-
tion by modeling the pdf of the estimated component as a
mixture of a number of GGD distributions at each iteration.
Assuming the probability density function of the estimated
component y at each iteration, i.e., f(y,®), is comprised
of k random variables with GGD distributions of the form
g(y; ax, i) = (/3k/2akf(1/ﬂk))exp(—|y|5k/aifk), and each
GGD contributes to formation of the pdf of y with a member-
ship probability p, we have

K

£(y,8) = prgly; on, )

k=1

where @ = [01,03,....0,] =
is the parameter space. f(y,

thus
/ f(y.0
R2

[(p1, a1, B1). -, (Pr s O]
©) is a probability dens1ty function,

. K
/ZPkg yi g, Bi)

R

]

Pk g(Y;akvﬂk) =1
2

I
Mx

w
I

1
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g(y; o, Bi) is also a probability density function, therefore
Sz 9(y; ax, Bi) = 1, and thus

K
G)ZZpkzl
k=1

and since py are probabilities, they are nonnegative (py > 0).
The maximum Log-likelihood estimate can be formulated as

N N K
=log [[ £(v,©) =log [[ D pg(ys e, i)

n=1 n=1k=1

= ZIO%ZPkg (v o, o)

n=1
where N represents the number of samples in y. The maximum
likelihood estimation is formulated as

© = argmax {A(y,0)}
e
defining ¢(k.n) = pkg(¥n; . Pk), results in the fol-

lowing conditional probabilities that are called membership
probabilities:

q(k,n)
k = — 7
p(kfn) ¥E_ g(m,n)
using Jensen’s inequalities [26], i.e., logZE by >

YR axlog(by/ay), the Log-likelihood at each iteration (i)
can be expressed as

SIS I

n=1 k=1

K
g(k,n
Z ) (k[n) log (()(k|1)1)

where b;)(© ) is the lower bound for the Log-likelihood func-
tion. Thus, to calculate the maximum Log-likelihood estimator
we need to maximize its lower bound, b;)(©) iteratively

N K
_ Z Zp(z) (kln)log q(k, n)

n=1k=1

_ZZp() (k|n) log p™¥ (k|n). 3)

n=1k=1

Ay, ©)

b (©)

HM7.

The second term of the right-hand side of (3) is a constant as it is
calculated from the old values. Thus, the maximization problem
is simplified to

6= max {b(i)(e)}
N K
= max {Z Zp(’) (k[n) log q(k, n)} .
Plodiofle | nm1 k=1

The probabilities p(k|n) can be calculated at each iteration (%)
using

pff)g (yn; a’ff); ﬂ‘”)

Effl:lpsrll)g (YINOCSH)a r<n))

&Zp

P (kfu) =

(k|n) = 1. )
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Setting the derivative of b(;,(©) with respect to c equal to
zero we have

N

=> p(kn)

n=1

d[b(©)]
day

0 [log (prg(yu; . Ox))]

=0
oy,

(@)

which results in the following expression for ¢, * at each itera-

tion

1

I'/jlii)zgzl (p(’i;(khl) |Yn|J£z>>} g ) (5)

o =

Setting the derivative of b(;)(©) with respect to ;. equal to
zero we have

104’5’; (pkg(yu Qs ﬁk))]

=0.
e

Zp (k|n)

aﬂk n=1
This equation results in (6) that will be used to calculate [31(:) at
each iteration

L ) (kn)
ﬁf)( /3<°¢(/3‘)>>Zp e

8(,‘)
k

n=1
where ¥(x) = d(log(I'(x)))/dx, is the polygamma function.
This equation can be solved using any optimization algorithm.
We used the fzero function of MATLAB (The MathWorks Inc.,
Natick, MA, USA) software to find the value of ﬁk at each
iteration.

These three equations are solved at each iteration and the pa-
rameter set {Poptimum  Coptimums Joptimum) are calculated for
each GGD distribution. The GGD that has the highest member-
ship probability (poptimum ) Was selected as the pdf of the source
and its parameters were used in the ICA algorithm.

D. Simulation Phantom

A simulation study was conducted to simulate DCE-MR im-
ages of a leaky phantom using a combination of finite element
analysis (FEA) and classical description of MRI physics by
means of Bloch equations.

Leakage Model (Finite Element Analysis): The Comsol Mul-
tiphysics (Comsol Inc., Burlington, MA, USA) finite element
analysis (FEA) software was used to construct the simulated
phantom that is shown in Fig. 1. This phantom is comprised of
a grid of 10 x 10 leaky tubes that run in parallel through a cubic
chamber of agar gel (0.5% agar gel). The tubes have internal di-
ameter of 200 pzm, wall thickness of 30 ;#m and center to center
spacing of 300 pmn. To model our experimental phantom exper-
iments some of the tubes are removed to simulate the blocked
or damaged tubes as shown in Fig. 1. The study simulated the
passage of a bolus of contrast agent through the tubes and its
leakage from the tubes into the agar gel over time. The spacing
and diameter of the tubes were selected such that the vascular

(b) (C]

Fig. 1. a: 3-D view of the simulation phantom, it also shows the imaging
plane that is located halfway through the phantom in x-direction and lies in the
yz-plane. b: The xz plane showing the tubes are parallel in the gel. c¢: The view
of the phantom from zy-plane that lies in the MR imaging plane.

fraction of the phantom is 3.8% so that it simulates the vascular
volume fraction of a tumor tissue [27].

The 2-D DCE-MRI data was simulated for an imaging plane
half way through the length of the chamber, transverse to the
phantom as depicted in Fig. 1(a). A cross-section showing
the orientation of the tubes in the imaging plane is shown in
Fig. 1(c). As the contrast agent arrives in the transverse plane it
diffuses into the surrounding gel. A range of different diffusion
coefficient was assigned to the gel, the tubes and tube walls
to account for variability of diffusion throughout the gel and
generate a heterogeneous leakage apace. As such, the imaging
plane was split into 2555 subdomains as shown in Fig. 2(a)
with different diffusion coefficients. It was assumed that the
diffusion coefficient of the gel had a uniform probability dis-
tribution with mean value of 2.08 x 10~* mm? - s~ ! [28] and
standard deviation of 1 x 1075 mm? - s~ 1. The subdomains
that constructed the inside of the tubes were given the highest
diffusion coefficients (1 x 1073 mm? - s71) as they were
simulating flow of water and the subdomains corresponding to
the walls of the tubes were assigned the lowest diffusion coeffi-
cients (2 x 107° £ 107 % mm? - s~1). The subdomains around
one of the tubes showing the inner circle of the tube, the tube
wall and the surrounding gel subdomains are also illustrated in
Fig. 1(a). The simulation was performed for 6.48 min with a
temporal resolution of 3.3 s which was chosen according to our
experimental study. The flow rate and contrast concentration of
the simulated bolus that was applied to the tubes at the x = 0
plane was selected such that the concentration-time curve of the
tubes in the imaging plane was the same as our experimental
studies. The contrast concentration distribution at time 2.5 min
after injection of the contrast agent is shown in Fig. 2(b) which
shows the heterogeneous distribution of contrast agent in the
phantom.

Dynamic Contrast Enhanced-MRI Simulation: It was as-
sumed that water was flowing through the tubes and the bolus
of Gadolinium (Gd)-DTPA contrast agent is added to the
flowing water. The geometry and contrast concentration of the
tubes and the agar gel that were calculated in the FEA were
fed to the developed MRI simulation software, and 120 frames
were simulated to generate the DCE-MRI dataset. This section
provides an overview of the 2-D MRI simulator that solved the
Bloch equation at each voxel. It was developed based on the
SIMRI project which was developed to simulate MR images
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Fig. 2. a: FE subdomains of the phantom in the imaging plane. There are 2555
subdomains in this plane with different diffusion coefficients. As shown in the
enlarged region of the phantom, the tubes, their walls and their surrounding gel
areas are separated and proper diffusion coefficients are assigned to the sub-
domains of each region. b: Contrast agent distribution in the imaging plane, at
time = 2.5 min after injection of the contrast agent. This figure shows the het-
erogeneous distribution of the contrast agent in the phantom.

[29]. The developed simulator starts with assigning proton
density g, longitudinal relaxation 77, and transverse relaxation
T’ to each voxel; these parameters are necessary for computing
local spin magnetization. It was assumed that each voxel is
comprised of two isochromates [30] corresponding to the tube
and gel compartments.

The proton density of each isochromate at each voxel was
calculated by taking the percentage of the voxel that belonged
to the tubes/gel, which was available from the FEA step, multi-
plied by the proton density of water/gel. The pre-contrast 7} re-
laxations (7y) of water and 0.5% agar gel were set to be 3000
ms and 2100 ms respectively. The pre-contrast 75 relaxations
(T2p) of the water and gel were set to 250 ms and 65 ms, re-
spectively, [29], [31]. The post-contrast 7} and 75 values were
calculated using the following equations [32]:

1 1
— = — + R{[Gd
v Tho + Ri[Gd
1 1
— = — + R5[Gd
T, Ty * Bl Gd

where Tho and 15y are the pre-contrast longitudinal and trans-
verse relaxations, respectively, 1 = 4.5mm !-s ! and Ry =
5.5mm ! - s ! are the longitudinal and transverse relaxivities
of contrast agent respectively and [Gd] is the contrast concen-
tration of water/gel that was calculated in the FEA step for each
voxel at each frame of the dynamic sequence. The use of two
isochromates in each voxel facilitates a realistic simulation of
the cases where there are two different materials in the voxel. It
also allows for simulation of intra-voxel de-phasing of spins in
the voxel.

The dynamic contrast-enhanced image simulation was
performed assuming a DBy magnetic field of 1.5T with
I ppm inhomogeneity using a single coil RF pulse. 2-D
spoiled gradient recalled (SPGR) sequence of 120 frames
(temporal resolution = 3.3 s) were simulated. Other imaging
parameters of the MRI simulation were: TR = 12.5 ms, TE =
2.9 ms, FA (flip angle) = 20, band width (BW) = 15.63 kHz,
Nx/Ny = 128/128, field of view (FOV) = 19.2 mm,
slice thickness = 5 mm. Gaussian noise was added to the
k-space data and its standard deviation was selected such that
an SNR of 20 was achieved in image space.

The simulated DCE-MRI data was reconstructed at four dif-
ferent resolutions. The high resolution dataset had in-plane res-

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 4, APRIL 2013

olution of 150 pm. In other datasets high frequency elements
were removed and the low resolution datasets had in-plane reso-
lutions 0f 300, 600, and 800 sm. A sample frame of each dataset
at time = 2.5 min after injection of the contrast agent is shown
in Fig. 3.

The magnitude of the MRI data is usually used in PK anal-
ysis of tumors. Thus, the performance of the proposed adaptive
complex ICA (AC-ICA) intravascular signal calculation tech-
nique was compared to the case in which ICA was applied to
the magnitude of the MRI data (magnitude ICA or Mag-ICA).
The use of DCE-MRI data with different resolutions was also
used to assess the robustness of the AC-ICA technique in sep-
arating intravascular signal, particularly in low resolutions that
are more commonly encountered in clinical trials.

Since ICA is a stochastic process, it is important to assess
the reproducibility of the intravascular time-intensity curves.
Therefore, to assess the reproducibility of the AC-ICA and
Mag-ICA results, the DCE-MRI dataset at each resolution was
generated five times. Although these datasets were generated
with the same imaging, geometry and physical parameters, they
differed in distribution of By inhomogeneity that was added
to the main magnetic field as a random Gaussian signal (1
ppm inhomogeneity) and the Gaussian noise (SNR. = 20) that
was added to the data. The Gaussian noise was added to the
simulated k-space data where standard deviation of noise was
selected such that the SNR in image space was 20 (SN = 20).

E. Tissue Mimicking Phantom

A physical phantom, similar to the simulation phantom, was
constructed that consisted of a chamber of agar gel (0.5 wt%,
Sigma-Aldrich Canada Ltd., Oakville, ON, Canada) used as
tissue mimicking material and a grid of 10 x 10 dialysis tubing
(Diapes PES-150, Baxter) representing the vascular component.
These tubes that approximated the diameter of small arteries
or large arterioles had inner diameter of 200 pm, wall thick-
ness of 30 pm and center to center spacing of 300 pm and
passed through the agar gel parallel to each other, as shown in
Fig. 4(a). These porous tubes (pore size of 89—972 nm) allowed
low-molecular weight contrast agent to freely diffuse from the
tubes into the agar gel.

DCE-MR imaging was performed at a transverse plane in
the middle of the phantom, as shown in Fig. 4(a). Water was
flowing through the tubes and an MR image of the phantom
at the imaging plane is shown in Fig. 4(b). The gadolinium
(Gd)-DTPA contrast agent was injected to the water stream as
a bolus. Once the bolus reached the chamber that contained
the gel, it was capable of leaking from the tubes into the gel.
The flow of water was kept at a constant rate of 0.047 ml/s
which translates into a flow velocity within arteriole’s physi-
ological range [33]. In order to measure the contrast agent con-
centration inside the tubes, the outflow line of the flow was ori-
ented such that it passed through the imaging plane as shown in
Fig. 4(b) and (c). The MR signal of this outflow line was used
as the actual tubes’ signal (with a delay of 9.7 s) and was used
to validate the calculated intravascular time-intensity curve.

Dynamic contrast-enhanced imaging was performed using a
2-D fast spoiled gradient recalled (fSPGR) sequence with the
following imaging parameters: TR = 12.5 ms, TE = 2.9 ms,
flip angle = 20, BW = 15.63 kHz, Nx/Ny/NEX =
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Fig. 3. Sample frame of each of the of the four datasets at time = 2.5 min after injection of the contrast agent, in-plane resolution of a: 150 j1n; b: 300 gern;

c: 600pm; and d: 800 pumn.
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Fig. 4. a: Photograph of the physical phantom used in this study. Imaging was
performed across the dashed line in the middle of the phantom, in a plane per-
pendicular to view that is shown in the photo. b: Schematic of the tissue mim-
icking phantom set up. Water was flowing at a constant rate (0.047 ml/s) from
the holding tank to the emptying tank. The contrast agent was injected into the
inflow line and the phantom was imaged at the imaging plane that included the
phantom and the outflow line as shown in the figure. c: Sample MR image of
the full imaging field of view (FOV) at time = 1.8 min after injection of the
contrast agent that shows the outflow line, the entire phantom at imaging plane
and the FOV around the tubes that is used for ICA analysis.

256/256/1, FOV = 45 mm, slice thickness = 53 mm. A total
of 120 images were acquired over about 6.48 min with a tem-
poral resolution of 3.3 s and no delay between acquisitions. As
in the simulation study, the data was reconstructed in different
resolutions to assess the performance and robustness of the
AC-ICA and compare it to the Mag-ICA and actual time-in-
tensity curve of the tubes (measured at the outflow line). The
image reconstruction was performed at five different in-plane
resolutions of 170, 225, 340, 450, and 680 ym. A sample frame
of each dataset at time = 1.8 min after injection of the contrast
agent, is shown in Fig. 5(a)—(e).

In order to assess the reproducibility of the intravascular time-
intensity curvs for both AC-ICA and Mag-ICA algorithm, two
phantoms with identical specifications were built and DCE-MRI
imaging with the same imaging parameters was performed on
both phantoms.

III. RESULTS

A. Simulation Phantom Study

The magnitude ICA (Mag-ICA) method introduced in [15],
[17] as well as the adaptive complex ICA (AC-ICA) for in-
travascular time-intensity curve calculation were applied to all

simulated datasets (four different resolutions) and the signal
from inside the tubes (intravascular signal) was extracted. Di-
mensionality reduction was performed on each dataset through
singular value decomposition (SVD) of the covariance matrix
of the data and only the eigenvalues that were larger than the
0.1% of the largest eigenvalue were kept which translated into
keeping approximately 99.9% of the information in the dataset.
The number of the eigenvalues that were kept for analysis
ranged between 5 and 8 which is the maximum number of IC’s
that could be estimated. In all cases, all IC’s were estimated
and the IC that corresponded to the tubes’ signal was selected
heuristically. The IC that had a uniform pre-contrast uptake
followed by a rapid contrast uptake and also a rapid wash-out of
the contrast agent to less than 60% of the peak signal intensity
within 3 min of injection of the bolus was selected as the tubes’
signal.

Fig. 6 shows the results of applying ICA to the magnitude of
the simulated DCE-MR images (Mag-ICA). The intravascular
component images for all datasets (four different resolutions)
are shown in Fig. 6(a)—(d). Fig. 6(e) shows the intravascular
time-intensity curve of the four datasets. These curves represent
the average signal intensity over time of all the voxels that are
separated by ICA as the intravascular space (tubes). Fig. 6(¢)
also shows the actual intravascular time-intensity curve which
was calculate by averaging the signal across the outflow line
[shown in Fig. 4(c)] over time as well as the raw data curve
calculate by averaging the signal across the raw MRI images
over time.

The time-intensity curves are normalized with respect to their
maximum and the baseline signal intensity is set to zero in order
to enable comparison. In Fig. 7 the results of applying AC-ICA
to the simulated complex-valued DCE-MRI data are illustrated.
The extracted IC images of tubes for all four resolutions are
shown in Fig. 7(a)—(d). The time-intensity curves of the tubes
for all four simulated datasets as well as the actual time-intensity
curve of the tubes and the raw data curve are shown in Fig. 7(e).
The time-intensity curves are normalized with respect to their
maximum and the pre-contrast signal intensity is set to zero in
order to enable comparison.

The IC images extracted using ACICA had complex values
and thus each voxel is represented with a 2-D vector (mag-
nitude and phase) while each voxel in the images shown in
Fig. 7(a)—(d) is represented with a 1-D value (image signal in-
tensity). This conversion was required for visualization pur-
poses and was performed by assigning negative sign to the mag-
nitude of the values of the voxels that had —7/2 < phase <
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Fig. 5. Sample frame of each of the five experimental DCE-MRI datasets of the phantom at time = 1.8 min after injection of the contrast agent, with in-plane

resolutions of: a: 170 pm; b: 225 pm; c: 340 um; d: 450 pm; and e: 680 pm.
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Fig. 6. The separated tubes image and the time-intensity curve of the tubes calculated using Mag-ICA for each of the four simulated DCE-MRI datasets. Tubes
images for datasets with in-plane resolutions of a: 150 pm; b: 300 pem; c: 600 zem; d: 800 gem. e: Calculated time-intensity curves of the tubes corresponding to
the four simulated datasets, the Actual time-intensity curve of the tubes and the curve corresponding to the mean across the entire raw (not analyzed) images over

time (raw data).

m/2 and assigning positive sign to the magnitude of the values
of the voxel with phase > /2 or phase < —m/2. This method
of visualizing the images provides consistent results with the
Mag-ICA analysis where we had both negative and positive
signal intensity values.

For each in-plane resolution, five DCE-MRI data sets of the
phantom were simulated with SN = 20. The AC-ICA and
Mag-ICA algorithms were applied to all datasets. Table I reports
the root mean square error (RMSE) between the estimated time-
intensity curves of the tubes obtained using each algorithm and
the actual curve for all four datasets. Table I also reports the
correlation coefficient between the estimated and actual time-
intensity curves of the tubes for both algorithms.

B. Experimental Phantom Study

The adaptive complex ICA and magnitude ICA were also ap-
plied to DCE-MRI images of the experimental tissue mimicking

phantom. Similar to the simulation study, dimensionality reduc-
tions was performed first, where eigenvalues that were larger
that 0.1% of the largest eigenvalue were kept. The phantom
data was reconstructed in five different in-plane resolutions and
both algorithms were applied to all five datasets. Fig. 8 shows
the results of applying the Mag-ICA algorithm to the exper-
imental DCE-MRI data. The IC images corresponding to the
tubes’ signal of the five datasets are shown in Fig. 8(a)—(e). The
time-intensity curves of the five datasets as well as the actual
time-intensity curve of the tubes that was measured at the out-
flow line of the phantom and the raw data curve calculate by
averaging the signal across the raw MRI images over time are
shown in Fig. 8(f). The baseline values of the time-intensity
curves of all datasets were set to zero and they were normal-
ized with respect to their maximum values.

Fig. 9 shows the results of applying the proposed AC-ICA
algorithm to the DCE-MRI data of the experimental phantom
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Fig. 7. The separated tubes image and the time-intensity curve of the tubes calculated using AC-ICA for each of the four simulated DCE-MRI datasets. Tubes
images for datasets with in-plane resolutions of a: 150 gm; b: 300 yem; c: 600 pm; d: 800 pm. e: Calculated time-intensity curves of the tubes corresponding to
the four simulated datasets, the Actual time-intensity curve of the tubes and the curve corresponding to the mean across the entire raw (not analyzed) images over

time (raw data).

TABLE 1
ROOT MEAN SQUARE ERROR (RMSE) AND CORRELATION COEFFICIENT
BETWEEN THE ESTIMATED TUBES’ TIME-INTENSITY CURVES AND THE
ACTUAL CURVE FOR FOUR DATASET IN BOTH ICA ALGORITHMS (RMSE
AND CORRELATION COEFFICIENTS ARE CALCULATED AFTER SETTING THE
BASELINE VALUES OF THE CURVES TO ZERO AND NORMALIZING THEM)

In-plane
. 150pm 300pm 600pm 800pm
Resolution
Root Mean Square Error (RMSE)
0.034+ 0.035+ 0.065+ 0.077+
AC-ICA
0.006 0.004 0.018 0.013
0.11x 0.19+ 0.3+ 0.36+
Mag-ICA
0.03 0.01 0.08 0.04
Correlation Coefficient
0.994+ 0.993+ 0.981+ 0.971+
AC-ICA
0.002 0.001 0.007 0.01
0.964+ 0.924+ 0.768+ 0.685+
Mag-ICA
0.016 0.005 0.087 0.06

for all five different in-plane resolutions. The separated tubes’
images of the five datasets are shown in Fig. 9(a)—(e). The corre-
sponding time-intensity curves of the tubes in these datasets as
well as the actual time-intensity curve of the tubes measured at
the outflow curve of the phantom and the raw data curve are
shown in Fig. 9(f). The baseline values of the time-intensity

curves of all datasets were set to zero and they were normal-
ized with respect to their maximum values.

Two experimental phantoms were built and DCE-MRI
imaging was performed on both phantoms to assess the repro-
ducibility of the results for both intravascular time-intensity
curve calculation algorithms. Table II reports the root mean
square error (RMSE) between the estimated and the actual
time-intensity curves of the tubes (outflow) for all five datasets
of both phantoms. This table also reports the correlation coeffi-
cient between the estimated and actual time-intensity curves of
the tubes for both algorithms in all five in-plane resolutions.

IV. DISCUSSIONS

Measurements of tumor size and serum markers are not ef-
ficient criteria in assessing tumor response to therapy partic-
ularly in anti-angiogenic therapies. Pharmacokinetic modeling
of DCE-MR images of a tumor is one of the approaches used
to assess its therapeutic response. A fundamental step in PK
modeling that is common amongst most models is determining
the intravascular contrast agent concentration which is approx-
imated using an arterial input function (AIF). Mehrabian ef al.
[15], [17] developed an ICA-based method to measure and sep-
arate signal that is generated in the tumor vasculature. Although
the output of MR imaging is complex-valued, only the magni-
tude data was used (as is common in most DCE-MRI studies)
and the phase information was not utilized in the study. This in-
troduced a fundamental challenge in ICA analysis as the linear
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Fig. 8. The separated tubes image and the time-intensity curve of the tubes calculated using Mag-ICA for each of the five experimental DCE-MRI datasets of the
tissue mimicking phantom. Tubes images for datasets with in-plane resolutions of a: 170 pm; b: 225 prn; c: 340 pm; d: 450 pm; and e: 680 pm. e) Calculated
time-intensity curves of the tubes corresponding to the five experimental datasets, the Actual time-intensity curve of the tubes (outflow) and the curve corresponding

to the mean across the entire raw (not analyzed) images over time (raw data).

mixture assumption of I[CA was violated. This problem was ad-
dressed by using short echo time (TE) and minimizing intra-
voxel de-phasing [15], [17]. The separated intravascular image
and time-intensity curves were validated against intravascular
contrast enhanced ultrasound measurements in both phantoms
and animal models.

An adaptive complex ICA (AC-ICA) method was introduced
in this study that used the complex-valued MRI data for ICA
and also used an adaptive cost function for ICA. The adaptive
cost function was determined by assuming the probability dis-
tribution of MRI data takes the form of a mixture of general-
ized Gaussian distributions (GGD) whose parameters were esti-
mated using an expectation maximization (EM) approach. Sim-
ulated and experimental phantoms were constructed and their
theoretical and experimental DCE-MRI data were acquired re-
spectively. Each phantom was comprised of a grid of leaky tubes
that represented the tumor vasculature embedded in a chamber
of agar gel that represented the extravascular extracellular space
of the tumor.

The AC-ICA method was applied to the DCE-MRI data of
simulated and experimental phantoms and the tubes’ time-in-
tensity signal was estimated. These results were compared with
the results of calculating time-intensity curves of the tubes using
the Mag-ICA method that was introduced in [15], [17] to high-
light the better performance of the AC-ICA. Both experimental
and simulation data where reconstructed in different resolutions
to assess the robustness of the method and its capability in sep-
arating signal of the tubes in low resolution data that are more
common in clinical practice.

As shown in Figs. 6 and 7, and Table I, in simulation study
both AC-ICA and Mag-ICA methods were capable of sepa-
rating time-intensity curve of the tubes with high accuracy for
high resolution data in both spatial and temporal domains. As
the voxel size increased (lower resolution), the AC-ICA demon-
strated higher accuracy and robustness compared to Mag-ICA in
dealing with datasets with a wide range of in-plane resolutions.
There were small differences between the time-intensity curves
of the tubes calculated using AC-ICA for different resolutions
while Mag-ICA curves changed significantly and its time-inten-
sity curves were not good for the lower resolutions. Note that in
lower resolutions although the tubes could not be visualized in
the spatial domain, however; their time-intensity curve was cal-
culated with good accuracy.

Similar results were obtained in the experimental DCE-MRI
data as shown in Figs. 8 and 9 and reported in Table II. The
tubes were separated accurately in both spatial and temporal do-
mains for the high resolution data. As the pixel size increased
it became more difficult to visualize the tube in the IC images
such that in the two lowest resolutions it was impossible to see
them separately from the leakage. However the time-intensity
curve of the tubes was estimated with high accuracy for all res-
olutions in both AC-ICA and Mag-ICA methods. Similar to the
simulation studies, the AC-ICA demonstrated better accuracy in
dealing with lower resolution data and there were smaller dif-
ferences between time-intensity curves of the tubes at varying
resolutions compared to the Mag-ICA.

There was an aura in the experimental phantom images out-
side of the tubes which is due to fabrication artifact. A few of
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Fig. 9. The separated tubes image and the intravascular time-intensity curve of the tubes calculated using AC-ICA for each of the five experimental DCE-MRI
datasets of the tissue mimicking phantom. Tubes images for datasets with in-plane resolutions of a) 170 e111; b) 225 g ¢) 340 g d) 450 g and e) 680 pean. e)
Calculated time-intensity curves of the tubes corresponding to the five experimental datasets, the Actual time-intensity curve of the tubes (outflow) and the curve
corresponding to the mean across the entire raw (not analyzed) images over time (raw data).

TABLE II
RMSE AND THE CORRELATION COEFFICIENT BETWEEN THE ESTIMATED
AND ACTUAL TIME-INTENSITY CURVES OF THE TUBES (OUTFLOW) FOR ALL
FIVE DATASETS OF BOTH PHANTOMS FOR MAG-ICA AND AC-ICA (RMSE
AND CORRELATION COEFFICIENTS ARE CALCULATED AFTER SETTING THE
BASELINE OF THE CURVES TO ZERO AND NORMALIZING THEM)

. ________________________________________________________________________|
In-plane

] 170pm 225pm 340pm  450pm 680pm
Resolution
Root Mean Square Error (RMSE)
0.038+ 0.054+ 0.079+ 0.084+ 0.129+
AC-ICA
0.001 0.002 0.001 0.001 0.011
0.089+ 0.124+ 0.186+ 0.192+ 0.248+
Mag-ICA
0.003 0.026 0.009 0.018 0.004
Correlation Coefficient
0.994+ 0.987+ 0.993+ 0.975+ 0.938+
AC-ICA
0.001 0.001 0.002 0.002 0.011
0.97+ 0.95+ 0.915+ 0.908+ 0.854+
Mag-ICA
0.014 0.017 0.005 0.014 0.004

the tubes were broken during the phantom construction process
and the contrast agent was capable of leaving these broken tubes
more easily. The results show that this aura is smaller in the
tubes image of the ACICA analysis (particularly in the high-res-
olution images) compared to the Mag-ICA results which shows

that ACICA is capable of separating the intravascular space
more accurately.

There are two reasons for superior performance of AC-ICA:
1) the ICA cost function is adapted at every iteration to match
the probability distribution of the tubes’ signal, 2) unlike the
Mag-ICA, the linear mixture assumption of ICA is not violated
in AC-ICA and thus intra-voxel de-phasing (spins inside each
voxel are not necessarily in-phase) and partial volume effect do
not play as significant role as they do in Mag-ICA.

Moreover, in the experimental study the signal intensity of
the tubes dropped below its baseline value. This effect is cur-
rently under investigation, however it could be associated with
the effects of the contrast agent that leaked to the EES on the T3
value of the voxels inside the tubes. It could also be associated
with the effects of the contrast agent that diffused too far from
the tubes, such that it could not return to the tubes and could not
be washed out.

In this study we developed an adaptive complex ICA-based
method to calculate and separate the intravascular signal in
DCE-MRI datasets. However, in PK analysis of tumor tis-
sues, this signal intensity has to be converted into contrast
agent concentration. This is not a trivial step for the results of
ICA-based method and requires further investigation as there
is an arbitrary scaling of the ICA results.

It was shown that although the tubes were not visible in
the IC images of low resolution datasets (both simulation and
experiment), the intravascular time-intensity curves in low res-
olution datasets are very close to the high resolution ones. This
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demonstrates that ICA-based calculation of the intravascular
time-intensity curve has the potential to be used in clinical
studies, where the resolution of DCE-MRI data is very low.
The AC-ICA method provided more accurate results compared
to Mag-ICA which suggests that complex-valued (magnitude
and phase) DCE-MRI data should be used to calculate the
intravascular time-intensity curve in the tumor. This could lead
to more accurate PK analysis and better understanding of the
tumor response to therapy.
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