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Surface modes of spherical objects subject to ultrasound excitation have been recently proposed to

explain experimental measurements of scattering from microspheres and ultrasound contrast agents

(UCAs). In this work, the relationship between surface modes and resonance frequencies of

microspheres and UCAs is investigated. A finite-element model, built upon the fundamentals of

wave propagation and structural mechanics, was introduced and validated against analytical

solutions (error <5%). Numerical results showed the existence of a systematic relationship between

resonance frequencies and surface modes of a 30 lm microsphere driven at 1–70 MHz. On the

contrary, for a 100 nm shelled, 4 lm diameter UCA, no clear relationship between the resonance

frequencies and the surface modes was found in the frequency range examined. Instead, the UCA

exhibited a collection of complex oscillations, which appear to be a combination of various surface

modes and displacements. A study of the effects of varying the shell properties on the backscatter

showed the presence of peaks in the backscatter of thick-shelled UCAs, which are not predicted by

previous models. In summary, this work presents a systematic effort to examine scattering and sur-

face modes from ultrasound contrast agents using finite-element models.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4740505]
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I. INTRODUCTION

Ultrasound contrast agents (UCAs) are gas-filled, encap-

sulated bubbles that are administered intravenously to the

venous system. They are very small (<8 lm), which enables

them to pass through capillaries, but big enough so that they

remain in the vasculature (Stride and Saffari, 2003). UCAs

have a high degree of echogenicity, and hence they enable

contrast between blood and the surrounding tissue (Greis,

2011). Depending on the contrast agent, the shell thickness

can vary from a few nanometers to a few hundred nano-

meters and is composed of material such as polymers, albu-

min, phospholipids, and surfactants (Calliada et al., 1998).

The first mathematical formulation that predicts the

dynamic response of an air bubble (no shell) subject to a

time-varying input pressure field is known as the Rayleigh–

Plesset (RP) equation. The RP equation has several limita-

tions. It is only applicable to a gas bubble oscillating in an

incompressible fluid and can only predict the radially sym-

metric oscillations of the bubble; hence it cannot be used to

model the behavior of UCAs that have an encapsulating shell

(Leighton, 2004). The RP equation has been modified by

many authors to take into account the presence of shell,

which increases both the overall mechanical stiffness of

the bubble and its acoustic damping. De Jong and Hoff

(1993) modeled the behavior of UCAs by incorporating

experimentally measured mechanical properties of the shell

into the RP equation. Church (1995) derived a RP-like equa-

tion describing the dynamics of UCAs in which the shell is

assumed to be a continuous layer of solid viscoelastic mate-

rial. Allen et al. (2001) used modal series solution to shown

that albumin-shelled contrast agents in the 1–40 MHz range

support dipole resonance in addition to the monopole reso-

nance predicted by other models (De Jong and Hoff, 1993;

Church, 1995; Doinikov and Dayton, 2007).

Finite-element analysis combined with other numerical

techniques, such as the boundary element method, infinite

elements, and T-matrix method have been used in the past to

model acoustic scattering from various objects submerged in

a fluid (Hunt et al., 1975; Wilton, 1978; Numrich et al.,
1981; Everstine and Henderson, 1990; Eaton and Regan,

1996). The near-field scattering was typically modeled using

finite elements, while other techniques were used to find the

far-field scattering. Most of these studies concentrated on

scattering from rigid objects (Hunt et al., 1975; Demkowicz

and Shen, 2006). Recently, Falou et al. (2005, 2006a,b)

developed a three-dimensional (3-D) finite-element model to

study acoustic wave scattering from spherical objects and bi-

ological cells. Pauzin et al. (2007) used a similar model to

investigate the changes in the monopole resonance fre-

quency of various thick-shelled UCAs (in which the shell

thickness is 10% of the UCA radius). Their model was based

on the near-field calculations of the pressure field, which

showed good agreement with analytical solutions (De Jong

and Hoff, 1993; Church, 1995; Doinikov and Dayton, 2007).
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Experimental studies were also conducted to investigate

the dynamic response and backscatter of UCAs (Deng et al.,
1998; Moran et al., 2002; Versluis et al., 2004; Goertz et al.,
2005; Ketterling et al., 2007; Dollet et al., 2008). While

some authors reported backscatter from UCAs centered at

the transducer central frequency with no harmonic compo-

nents (Deng et al., 1998; Moran et al., 2002), others

observed the presence of harmonics in the backscatter of a

lipid-shelled UCA, DefinityTM (Bristol-Myers Squibb, North

Billerica, MA) (Goertz et al., 2005). Recently, Ketterling

et al. (2007) reported the presence of subharmonics in the

response of a polymer-shelled UCA, Point (POINT Biomedi-

cal, San Carlos, CA). In addition, non-spherical oscillations

were observed for phospholipid shelled UCAs (Versluis

et al., 2004; Dollet et al., 2008). Despite these theoretical

and experimental efforts, the behavior of UCAs is not fully

understood (Stride and Saffari, 2003). For instance, current

analytical models do not incorporate shape oscillations or

surface modes (Versluis et al., 2004; Dollet et al., 2008).

These surface modes may alter the backscatter characteris-

tics of these UCAs.

Surface modes are thought to occur as a result of the

existence of surface waves (shell waves in the case of

UCAs), which travel along the free surface of the scatterer.

These modes are denoted by n, which is the number of wave-

lengths of the surface distortion that span the sphere’s cir-

cumference (Uberall et al., 1996). Basic surface modes

include the breathing mode (n¼ 0), where the sphere con-

tracts and expands periodically (also known as radial or

monopole oscillation). In the dipole mode (n¼ 1), the sphere

oscillates rigidly back and forth, whereas in the quadrupole

mode (n¼ 2), the shape alternates between a prolate and an

oblate spheroid, etc. (Uberall et al., 1996). Higher order sur-

face modes exhibit more complex oscillations and

displacements.

This work aims to investigate the use of finite-element

models of wave propagation, coupled with stress–strain

equations describing the interactions of the incident wave

with either a solid sphere or a shelled spherical object.

Model predictions are compared to available analytical solu-

tions for elastic microspheres and the predicted resonances

of UCA. Microspheres were chosen since analytical solu-

tions for their backscatter responses were developed (Faran,

1951) and validated experimentally by previous investigators

(Baddour et al., 2005; Falou et al., 2010).

We show how this model can also accurately predict the

resonance frequencies of UCAs predicted by the Church

model (Church, 1995). We use this framework to then inves-

tigate surface mode generation and to establish a relationship

between UCA properties, resonance frequencies, and corre-

sponding surface modes.

II. METHODS

In this work, we introduce a finite-element model to

investigate the relationship between the far-field ultrasonic

backscatter response of microspheres and UCAs and their cor-

responding non-spherical oscillations. The model describes

the basic fundamentals of sound wave propagation using the

Helmholtz equation in addition to the stress–strain relation-

ship within elastic material and is capable of predicting the

dynamic response of spherical objects, particularly surface

modes. Briefly, designing and solving a problem using finite-

element analysis involves the following steps: Geometry crea-

tion, defining material properties, and discretization of the

computational domain into finite elements. Domain discretiza-

tion involves the creation of a system of points called nodes,

which makes a grid called a mesh. This is followed by defin-

ing boundary condition and the assembly of elements together

while satisfying the requirements of equilibrium and continu-

ity between them. The result of the assembly process is a set

of algebraic equations represented in matrix form. The last

step involves solving the resulting algebraic equations and

interpreting the results. The COMSOL MultiphysicsTM 3.5a

(COMSOL, Inc., Burlington, MA) software package was used

as a platform for the finite-element model development. A

spherical geometry, such as that of polystyrene microspheres

for which analytical solutions have been validated experimen-

tally (Baddour et al., 2005; Falou et al., 2010), was chosen for

the first stage of the model development, since analytical solu-

tions exist that enable the comparison of computational and

analytical results and hence allows for the validation of the

developed finite-element model. The scatterer is located in the

center of the computational domain with different acoustic

properties than those of the surrounding fluid. The scatterer is

insonified by a plane wave traveling in the þz direction.

Due to the symmetric nature of the problem, the 3-D model

can be simplified by a two-dimensional (2-D) axisymmetric

model, with the z axis being the axis of the symmetry. The 2-D

axisymmetric model requires less computational resources and

execution times than 3-D models, particularly at high frequen-

cies where more mesh elements are required as a result of the

short ultrasonic wavelengths contained in the incident pulse.

A. Polystyrene microsphere

An example of a scatterer that supports both longitudinal

and shear waves is polystyrene microspheres used for the cali-

bration of cell counters. Baddour et al. (2005) and Falou et al.
(2010) have shown good agreement between analytical solu-

tions and experimental backscatter measurements of polysty-

rene microspheres suspended in water. The acoustic pressure p
depends on the radial (r), axial (z), and azimuthal (u) coordi-

nates and is given by (Ihlenburg, 1998; COMSOL, Inc., 2008)

pðr; z;/Þ ¼ pðr; zÞe�im/; (1)

where m is the circumferential wave number. The time-

harmonic Helmholtz wave equation was used to model prop-

agation of sound waves in the domain outside the scatterer,
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(2)

where p is the acoustic pressure, q is the mass density of the

medium, x is the angular frequency (x¼ 2pf) of the wave,

and c is the speed of the wave in the medium. The
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surrounding medium was assumed to be water having a den-

sity and speed of sound of 1000 kg/m3 and 1483 m/s, respec-

tively. The constitutive equation for linear elastic material

was used to describe the stress–strain relationship in the

microsphere. The stress r and the strain e are related by

Hooke’s law for isotropic material (O~nate, 2009; Logan,

2012),

r ¼ ½D�e; (3)

where [D] is given by

½D� ¼ E

ð1þ vÞð1� 2vÞ

1� v v v 0

v 1� v v 0

v v 1� v 0

0 0 0
1� 2v

2

2
6664

3
7775;

(4)

r ¼

rr

rz

r/

srz

0
BB@

1
CCA; (5)

and

e ¼

er

ez

e/

crz

0
BB@

1
CCA: (6)

E is the Young’s modulus, � is the Poisson’s ratio, and rr,

rz, r/ are the radial, axial, and circumferential stresses,

respectively. srz is the shear stress. The notation sij is used to

represent shear stresses where i denotes the direction of the

stress component, while j denotes the surface on which the

stress component acts. er, ez, e/, and crz are the radial, axial,

circumferential, and shear strains, respectively. Two bound-

ary conditions were imposed, one for the outer domain

boundary and one for the boundary between the scatterer

and the surrounding medium (Fig. 1). A second-order non-

reflecting boundary condition proposed by Bayliss–Gunzbur-

ger–Turkel (Bayliss et al., 1982; Falou et al., 2006b) was

applied on the outer boundary. This boundary condition

approximates an infinite space so that the scattered wave is

not reflected back into the domain. The Bayliss–Gunzbur-

ger–Turkel condition is given by

@2p

@r2
þ 4

R0

� 2ik

� �
@p

@r
þ 2

R0

� 4ik

� �
p

R0

� k2p¼ P0e�ikz;

(7)

where k is the wave number (k¼x/c) and R0 is the radius of

the boundary (which was three times that of the scatterer ra-

dius in this work). The term on the right-hand side represents

the emitted plane wave from the transducer, P0 (assumed to

be 1 a.u.), whose direction is along the þz axis. In the case

of an elastic material immersed in a fluid, shear and surface

waves may also exist inside and at the surface of the

scatterer. The acoustic wave incident on the surface of the

scatterer exerts a load on the surface of the elastic sphere

described by

F ¼ �np; (8)

where F is the face load, n is the outward pointing normal vec-

tor to the surface, and p the wave pressure on the surface

(Ihlenburg, 1998; COMSOL, Inc., 2008). The normal compo-

nent of acceleration was coupled at the surface of the scatterer

in the solid (right-hand side) and fluid (left-hand side) domains,

n � 1

q
rp

� �
¼ �ðn � uÞx2; (9)

where u is the time-harmonic displacement vector. COMSOL’s

implementation of the stress-strain formulation is based on the

principle of virtual work, which states that for any displace-

ment, the total work from internal strains is the negative of the

work from external loads, so that their sum equals to zero

(COMSOL, Inc., 2008; O~nate, 2009). Piecewise-linear polyno-

mial on a grid of triangular elements also known as quadratic

Lagrange triangular elements (Zienkiewicz et al., 2005) were

used in the discretization of the computational domain.

Among other solvers offered by the COMSOL Multiphysics

software package, the Unsymmetric-Pattern MultiFrontal Pack-

age or UMFPACK solver (Davis, 2004) was used to obtain a so-

lution since it is fast (non-iterative). The finite-element model

was executed on a computer having an Intel
VR

XeonTM 2.80 GHz

Processor with 1 Gbyte of random access memory running

Microsoft
VR

Windows XP
VR

operating system. The computation

time was found to be 10 s per frequency on average.

B. UCA

UCAs are composed of an elastic shell encapsulating

a gas core. The finite-element model (Fig. 1) described

FIG. 1. Setup of the finite-element model for an UCA immersed in a fluid.
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previously had to be modified in such a way so that (a) the

time-harmonic Helmholtz wave equation is used to model

propagation of sound waves in the gas core as well as the do-

main outside the scatterer and (b) at the gas core-shell and

shell-surrounding medium interfaces, both Eqs. (8) and (9)

are imposed as boundary conditions to account for the pres-

ence of shear and surface waves inside and at the surface of

the UCA shell. The number of mesh elements was chosen by

studying the effect of refining the mesh on the backscatter

pressure amplitude. It was found that 14 736 triangular

elements are needed to obtain accurate solutions as shown in

Fig. 2. Figure 3 illustrates the corresponding meshed model.

The fundamental resonance frequency of a given UCA was

found by determining the frequency that produces the first

peak in its backscatter response. This frequency was com-

pared to the analytical solution formulated by Church

(1995). In his work, the UCA is modeled as a continuous

layer of viscoelastic solid material (shell) that separates the

gas core from the surrounding liquid and whose angular lin-

ear resonance frequency is given by

x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqsR

2
01bÞ

�1
3jPh �

2s1

R01

� 2s2R3
01

R4
02

þ 4
VsGs

R3
02

1þ S 1þ 3R3
01

R3
02

� �� �	 
s
; (10)

where S is a term accounting for the strain, Vs is the vol-

ume, Gs is the shear modulus, qs is the mass density, R01 is

the inner radius, R02 is the outer radius, s1 is the inner sur-

face tension, and s2 is the outer surface tension of the shell,

respectively. Ph is the hydrostatic pressure (105 Pa), j is the

polytropic exponent (1.4 in the adiabatic case), and b is a

term accounting for the difference in mass densities

between the shell and the surrounding fluid. A 4 lm diame-

ter perfluorocarbon phospholipid-coated contrast agent

known as BR14 (Bracco Research SA, Geneva, Switzer-

land) surrounded by water was used to validate the finite-

element model by comparing the resonance frequency

predicted by both the finite-element model and the Church

solution. This contrast agent was chosen since it is widely

used and has been the subject of research by many investi-

gators (Goertz et al., 2003; Versluis et al., 2004; Emmer

et al., 2007; Dollet et al., 2008). Table I gives the physical

properties of BR14 assumed to undergo adiabatic oscilla-

tions. The surface tensions at both the shell–gas and the

shell–liquid interfaces were assumed to be negligible

(Emmer et al., 2007). A parametric study was also per-

formed using the finite-element model to study the effects

of changing the UCA parameters on its scattering behavior

at high frequencies (1–70 MHz). The far-field scattered

pressure from the UCA insonified by a plane wave traveling

in the þz direction was investigated by varying its diame-

ter, shell thickness, and shell elasticity, while keeping other

parameters fixed. It is believed that the finite-element

model, which describes the basic fundamentals of sound

wave propagation and stress–strain relationship within elas-

tic material, may help in the understanding of the behavior

of UCAs at high frequencies. It may also provide an insight

into the presence of harmonic components in the UCA

response observed experimentally at low pressures (Goertz

et al., 2005).

FIG. 2. Backscatter pressure amplitude (Pa) vs number of mesh elements.
FIG. 3. Meshed model of UCA shown in Fig. 1. It is subdivided into 14 736

triangular elements.
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III. RESULTS

We initially present the simulations results of a well

calibrated microsphere suspended in water. Figure 4 shows

the comparison between the analytical (Faran) and finite-

element solutions for ultrasound scattering from a 30 lm

polystyrene microsphere immersed in water. The plot shows

the backscatter transfer function (BSTF) versus frequency.

The maximum percentage error between both solutions was

found to be less than 1%. Figure 5 depicts the deformations

of the microsphere immersed in water at five resonance fre-

quencies, which corresponded to surface modes (highlighted

in Fig. 4). Figure 6 shows the angular distribution of scatter-

ing for the same microsphere at the first five resonance

frequencies.

In order to validate the finite-element model results for

UCAs, the resonance frequencies of the BR14 contrast

agents having diameters ranging from 1 to 10 lm were com-

pared against the Church model predictions. Figure 7 illus-

trates these comparisons. The maximum percentage error

between the Church and the finite-element solutions was

found to be less than 5%. The finite-element model was then

used to examine how changes in the physical properties of

the contrast agents would alter the scattering behavior and

deformations of these agents as a function of frequency. Fig-

ure 8 shows the effects of varying the shell thickness from 3

to 100 nm on the backscatter response for a 4 lm BR14

while keeping other parameters fixed. Figure 9 depicts the

deformations of a 100 nm shelled UCA at five frequencies

highlighted in Fig. 8. The angular distribution of scattered

sound as a function of angle for the same UCA at five reso-

nance frequencies is shown in Fig. 10. The effects of varying

the shell shear modulus from 10 to 60 MPa on the backscat-

ter response for a 100 nm shelled, 4 lm diameter UCA are

shown in Fig. 11. Figure 12 shows the effects of varying the

diameter from 1 to 6 lm on the backscatter response for a

100 nm shelled UCA. Figure 13 shows the relationship

between shell thickness and monopole resonance frequency

for a 4 lm UCA. Figure 14 shows the relationship between

shell shear modulus and the resonance frequencies for a 100

nm, 4 lm UCA. The relationship between diameter and reso-

nance frequencies for a 100 nm shelled UCA is shown in

Fig. 15.

IV. DISCUSSION

Various analytical solutions have been developed by

other investigators to study the behavior of scattering from

spherical objects (Faran, 1951) and resonant scattering from

UCAs (De Jong and Hoff, 1993; Church, 1995). While the

Faran solution is based on the equation of wave propagation,

predictions of resonances of UCAs are based on variants of

the RP equation (such as the Church model) that describe the

microbubble oscillation dynamics. These analytical solutions

do not model wave propagation and the interactions of the

pressure wave with the UCA shell. Therefore, most UCA

models do not incorporate surface mode oscillations, which

may lead to strong scattering at frequencies the Church

model does not predict. Moreover, such analytical models

TABLE I. Physical properties of the BR14 ultrasound contrast agent

(Emmer et al., 2007; Dollet et al., 2008).

Property Value

Shell thickness (dRs) 3 nm

Shell density (qs) 1100 kg/m3

Shell’s Young’s modulus (Es) 177.6 MPa

Shell’s shear modulus (Gs) 60 MPa

Shell’s Poisson’s ratio (�s) 0.48

Perfluorocarbon density (qg) 11.21 kg/m3

Perfluorocarbon speed of sound (cg) 100 m/s

FIG. 4. (Color online) Analytical (Faran) and finite-element solutions for

scattering from a 30 lm polystyrene microsphere immersed in water. The

labels at the top denote the frequencies that produce peaks in the BSTF.

FIG. 5. (Color online) Finite-element solutions for deformations of a 30 lm

polystyrene microsphere at (a) 23.1, (b) 33.7, (c) 43.8, (d) 53.5, and (e)

63.2 MHz. The plots show a snapshot of the maximum deformation for a

slice parallel to the direction of wave propagation (bottom to top). The cyan

half circle and the black curve illustrate the shape of the microsphere before

and after applying the pressure, respectively. The displacement was multi-

plied by a factor of 4.5� 107–1.6� 108 for visualization purposes.
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cannot take into account shell defects (Bloch et al., 2004;

Kooiman et al., 2010) or time-varying properties (Borden

et al., 2005). A finite-element model that can incorporate

such complexities was developed and validated by compar-

ing the finite-element model solution of wave propagation to

the Faran analytical solution for a 30 lm polystyrene micro-

sphere. It was then applied to shelled objects such as UCAs.

A. Polystyrene microsphere

An excellent agreement was found between the analyti-

cal and finite-element solutions, despite the large changes in

pressure as a function of ultrasound frequency as shown in

FIG. 7. (Color online) Resonance frequency vs contrast agent diameter:

Comparison between the Church (solid line) and finite-element (inverted tri-

angles) solutions.

FIG. 8. (Color online) Effects of varying the shell thickness on the backscat-

ter response for 4 lm diameter BR14 contrast agent. The labels at the top

denote the frequencies that produce peaks in the BSTF for the 100 nm

shelled UCA.

FIG. 9. (Color online) Finite-element solutions for deformations of a

100 nm shelled, 4 lm diameter UCA at (a) 15.2, (b) 37.7, (c) 49.6, (d) 51.6,

and (e) 64.8 MHz. The plots show a snapshot of the maximum deformation

for a slice parallel to the direction of wave propagation (bottom to top). The

cyan half circle and the black curve illustrate the shape of the UCA before

and after applying the pressure, respectively. The displacement was multi-

plied by a factor of 3.5� 105–5� 107 for visualization purposes.

FIG. 6. (Color online) Finite-element solutions for angular scattering from a

30 lm polystyrene microsphere at (a) 23.1, (b) 33.7, (c) 43.8, (d) 53.5, and

(e) 63.2 MHz. The plots show the pressure amplitude (Pa) vs angle (deg).

Backscattering occurs at 180�.
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Fig. 4. Various wide peaks of comparable magnitudes were

found in the backscatter of the microsphere and correspond

to its resonance frequencies. The first five resonances occur

at 23.1, 33.7, 43.8, 53.5, and 63.2 MHz. A close look at the

FIG. 10. (Color online) Finite-element solutions for angular scattering from

a 100 nm shelled, 4 lm diameter UCA at (a) 15.2, (b) 37.7, (c) 49.6, (d)

51.6, and (e) 64.8 MHz. The plots show the pressure amplitude (Pa) vs angle

(deg). Backscattering occurs at 180�.

FIG. 11. (Color online) Effects of varying the shell shear modulus on the

backscatter response for a 100 nm shelled, 4 lm diameter UCA.

FIG. 12. (Color online) Effects of varying the contrast agent’s diameter on

the backscatter response for a 100 nm shelled UCA.

FIG. 13. (Color online) Relationship between shell thickness and monopole

resonance frequency for a 4 lm UCA.

FIG. 14. (Color online) Relationship between shell shear modulus and the

resonance frequencies for a 100 nm, 4 lm UCA.
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deformations of the polystyrene microsphere at its resonance

frequencies (Fig. 5) reveals the presence of non-spherical

oscillations, or surface modes, at these frequencies which

become more complex in shape as the frequency increases.

At 23.1 MHz (lowest resonance frequency), the microsphere

oscillates between a prolate and oblate spheroidal shape,

known as quadrupole mode or mode n¼ 2 (Uberall et al.,
1996). The octupole mode (n¼ 3) occurs at 33.7 MHz,

where three wavelengths of the surface distortion are needed

to span the microsphere’s circumference. Four (n¼ 4), five

(n¼ 5), and six (n¼ 6) wavelengths of the surface distortion

are required to span the microsphere’s circumference at

43.8, 53.5, and 63.2 MHz, respectively. The angular distribu-

tion of scattering becomes more complex in shape as the fre-

quency increases (Fig. 6). A distinct angular directivity

characterizes each resonance frequency because of multipole

effects. The forward- and backscattering amplitudes are

identical at 23.1 and 33.7 MHz (n¼ 2, 3). For frequencies

above 33.7 MHz, the forward scattering becomes stronger

than the backscatter. The number of scattering lobes also

increases as a function of the resonance frequency, which is

likely related to the multipole effects. No monople or dipole

modes (n¼ 0, 1) were found at resonances in the frequency

range of interest.

B. BR14 UCA

A very good agreement (maximum error of< 5%) was

found between the finite-element model and the Church ana-

lytical solution (Fig. 7). The monopole resonance frequency

decreases with the increase of the contrast agent diameter,

which agrees with previous findings (De Jong and Hoff,

1993; Church, 1995). Increasing the shell thickness of the

UCA produces new features in the backscatter response as

shown in Fig. 8. When the shell thickness is increased from

3 to 100 nm, with the other simulation parameters held con-

stant, several changes in the ultrasound backscatter power

occur. The monopole peak became wider, decreased in

height, and increased to 15.2 MHz from 2.9 MHz with the

increase of shell thickness. For 100 nm thick shelled contrast

agent, four other peaks appear at 37.7, 49.6, 51.6, and

64.8 MHz. The peak centered at 51.6 MHz is of a compara-

ble height to that of the monopole peak at 15.2 MHz. A study

of the deformations of this UCA leads to some interesting

findings. First, at 15.2 MHz, the UCA contracts and expands

periodically and exhibits the breathing mode or n¼ 0. At

higher resonance frequencies, the UCA undergoes a shape

deformation characterized by a translational motion, in addi-

tion to contraction and expansion. The UCA shell thickness

becomes non-uniform as the UCA oscillates: Thinning of the

shell occurs in the direction of the translation, whereas thick-

ening occurs in the opposite direction as shown in Figs. 9(d)

and 9(e). This change in shell thickness is particularly seen

at high resonance frequencies (51.6 and 64.8 MHz). The sur-

face modes illustrated in Fig. 9 seem to correlate with the

angular scattering shown in Fig. 10. For the monopole reso-

nance at 15.2 MHz, an isotropic scattering is obtained, which

is similar to that of a free air bubble (Falou et al., 2006a). At

higher resonance frequencies (37.7, 49.6, 51.6, 64.8 MHz),

the scattering amplitude is directional and is of greater mag-

nitude in the forward direction compared to the back direc-

tion. This is likely due to the translational motion of the

contrast agent observed at these frequencies. The shape

oscillations of the contrast agent above the monopole reso-

nance appear to be the result of the summation of various

surface modes. The resonance peaks at 49.6, 51.6, and

64.8 MHz are identified as overtones of the resonance peak

at 37.7 MHz since they all exhibit similar shape oscillations

and angular distributions of scattering. It is instructive to

compare the surface modes exhibited by the UCA to those

exhibited by the polystyrene microsphere. The former devel-

oped a breathing mode (n¼ 0) at the fundamental resonance

frequency and a collection of complex oscillations at higher

frequencies, in contrast to the latter, which does not exhibit

the breathing mode but rather higher modes starting with

n¼ 2 (quadrupole mode) and ending with mode n¼ 6 for the

range of frequencies studied. For the polystyrene micro-

sphere, a systematic relationship exists between the reso-

nance frequency and its corresponding surface mode. The

higher the resonance frequency, the more complex the oscil-

lation pattern, and hence the higher is the mode number. No

such relationship was found for the UCA.

The study of surface modes of microspheres and UCAs

in particular may have implications on imaging and thera-

peutic applications. Surface modes may play a role in the

generation of the acoustical energy during harmonic imaging

with UCAs, a promising imaging technique that offers a

very good contrast between tissue and blood vasculature

(Goertz et al., 2007; Jafari Sojahrood et al., 2011). They

may also provide insights into the shell properties, which

may lead to a better modeling of the shell behavior. In terms

of therapeutic applications, surface modes will help in the

understanding of the mechanism of microbubble rupture and

the release of drug during localized drug delivery process, as

stress/strain distributions in the shell can be studied in detail.

As discussed earlier, when the shell thickness is

increased, the monopole peak becomes wider, decreases in

height, and shifts toward higher frequencies. An empirical

FIG. 15. (Color online) Relationship between diameter and monopole reso-

nance frequency for a 100 nm shelled UCA.
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quadratic relationship was found between the shell thick-

ness and the monopole resonance frequency as shown in

Fig. 13. Increasing the shell’s shear modulus from 10 to

60 MPa for the 100 nm shelled UCA, while keeping other

parameters fixed (Fig. 11), produced similar effects to those

obtained as the result of the increase in the shell thickness.

The monopole and the second dominant (whose magnitude

is comparable to that of the monopole) backscatter peaks in

the range of frequencies studied became wider and shifted

to higher frequencies. For the 10 MPa shell, these peaks

were initially centered at 6.3 and 21.2 MHz, and with

increasing shear modulus, they shifted to 15.2 and

51.6 MHz for the 60 MPa shell, respectively. In addition,

the difference between the frequencies of the monopole and

the second dominant peaks increases as the shell’s shear

modulus increases (6.3 and 21.2 MHz for 10 MPa vs 15.2

and 51.6 MHz for 60 MPa). A quadratic relationship was

also found between the shell’s shear modulus and the

monopole and second dominant resonance frequencies as

shown in Fig. 14. When the diameter of a 100 nm shell

UCA is decreased from 6 to 1 lm, with the other simulation

parameters held constant, several features changed in the

backscatter response. The monopole peak became wider,

decreased in height, and shifted toward higher frequencies.

High resonant peaks originally presented in the backscatter

of UCAs whose diameters are larger than 3 lm are no

longer present in the backscatter of UCAs of smaller

diameters. The monopole resonance peak is not visible for

the 1 lm UCA and likely occurred at a frequency outside

the range of this study. The UCA monopole resonance

frequency varies as a function of the inverse of the square

root of the UCA diameter cubed (volume) as shown in

Fig. 15.

The results reported in this work show that the shell

thickness, its elasticity, and the diameter of the UCA play a

significant role in the generation of other resonance peaks at

high frequencies, which may contribute to the generation of

harmonics (useful for imaging) and stresses that may lead to

UCA collapse (useful for therapy). This may provide an ex-

planation for the presence of harmonics in the backscatter of

the Definity UCA (Goertz et al., 2005). This study also

shows that more careful design approaches may be taken to

maximize the backscatter response from UCAs for imaging

purposes. This can be achieved by using the developed

finite-element model, which describes the basic fundamen-

tals of sound wave propagation and stress–strain relationship

within the elastic material, to optimize the UCA parameters

in order to obtain the desired results. It also shows that a

relationship exists between resonance frequencies and sur-

face modes. This is particularly important for the under-

standing of the mechanism of drug release from drug

delivery vehicles (such as drug encapsulated polymer micro-

spheres) for therapeutic applications. The number of frag-

ments formed during the UCA fragmentation has been

linked to surface modes (Versluis et al., 2004) and hence a

study of these modes will help in determining the optimal

conditions for the drug release.

In the current model, the Helmholtz wave equation was

used to solve wave propagation in the surrounding medium.

It does not take into account dissipative effects in the liquid

which could lead to signal loss due to attenuation. Previous

investigators (Baddour et al., 2005; Falou et al., 2010) have

shown that this assumption is valid for single scatterers sus-

pended in water where a very good agreement was found

between analytical solutions (which were shown to be identi-

cal to finite-element computations in this work as shown in

Fig. 4) and experimental measurements. In surrounding

media with high attenuation, such losses can be incorporated

into the model by the addition of a complex expression for

the wave number in the Helmholtz equation. In addition, the

current model does not account for non-linearity associated

with wave propagation in biological media. This will be

incorporated in future models.

V. CONCLUDING REMARKS

A finite-element model, built upon the fundamentals of

acoustics and structural mechanics, was introduced to study

the dynamic behavior and the backscatter responses of elas-

tic microspheres and UCAs. An excellent agreement was

found between the analytical and finite-element solutions for

the backscatter from individual polystyrene microspheres

and predictions of the resonance frequencies of UCAs. For

the polystyrene microspheres, a systematic relationship was

found between the resonance frequencies and the micro-

sphere surface modes, which appear in the form of non-

spherical deformations. A correlation was also found

between the resonance frequency and the angular distribu-

tion of scattering, which becomes more complex in shape as

the frequency increases. On the other hand, for the UCA, no

systematic relationship between the resonance frequencies

and the surface modes was found. Instead, the UCA exhib-

ited a collection of complex oscillations, which appear to be

a combination of various surface modes. This was also con-

firmed by examining the angular distribution of scattering at

its resonance frequencies. A study of the effects of varying

the shell properties on the resonance frequencies of UCAs

provided some insights into their backscatter behaviors,

which could be exploited for imaging purposes. The finite-

element model developed in this work was shown to provide

a better framework for understanding the scattering and the

shape oscillations of spherical objects such as microspheres

and UCAs.

Future work includes the experimental measurement of

the backscatter response from individual UCAs (Falou et al.,
2010) which could be compared to theoretical predictions of

the finite-element model. If required, non-linear wave propa-

gation in the surrounding medium and heterogeneity within

the UCA shell (Kooiman et al., 2010) will be incorporated

into the finite-element model. Parametric studies will be con-

ducted to estimate some of the UCAs’ physical properties

(such as the shell’s elasticity) that are hard to measure exper-

imentally. Once this has been accomplished, the finite-

element model will be used to understand the scattering

behavior of targeted UCAs when they are bound to cells or

inhibited from oscillating freely due to other obstacles. Such

understanding is crucial for various targeted ultrasound

imaging applications, such as molecular imaging.
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