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Purpose: Currently, no routinely used imaging modality is available to assess tumor responses to cancer treatment
within hours to days after radiotherapy. In this study, we demonstrate the preclinical application of quantitative
ultrasound methods to characterize the cellular responses to cancer radiotherapy in vitro.
Methods and Materials: Three different cell lines were exposed to radiation doses of 2–8 Gy. Data were collected
with an ultrasound scanner using frequencies of 10–30 MHz. As indicators of response, ultrasound integrated
backscatter and spectral slope were determined from the cell samples. These parameters were corrected for ultra-
sonic attenuation by measuring the attenuation coefficient.
Results: A significant increase in the ultrasound integrated backscatter of 4–7 dB (p < 0.001) was found for radi-
ation-treated cells compared with viable cells at all radiation doses. The spectral slopes decreased in the cell sam-
ples that predominantly underwent mitotic arrest/catastrophe after radiotherapy, consistent with an increase in
cell size. In contrast, the spectral slopes did not change significantly in the cell samples that underwent a mix of
cell death (apoptosis and mitotic arrest), with no significant change in average cell size.
Conclusion: The changes in ultrasound integrated backscatter and spectral slope were direct consequences of cell
and nuclear morphologic changes associated with cell death. The results indicate that this combination of quanti-
tative ultrasonic parameters has the potential to assess the cell responses to radiation, differentiate between differ-
ent types of cell death, and provide a preclinical framework to monitor tumor responses in vivo. Crown
Copyright � 2008 Published by Elsevier Inc.
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INTRODUCTION

In clinical oncology and experimental therapeutics, changes in

tumor growth rate or volume have been traditionally used as

a first indication of the treatment response. These changes typ-

ically occur late in the course of therapy. Currently, no routinely

used clinical imaging modality is available to assess tumor re-

sponses to cancer treatment within hours to days after radiother-

apy. Computed tomography (CT) and positron emission

tomography (PET) imaging or combined CT/PET imaging

have been used to assess tumor responses to cancer therapies,

typically 3–4 weeks after treatment initiation (1, 2). Dynamic

contrast-enhanced magnetic resonance imaging measurements

have been observed to correlate with immunohistochemical
123
measures of tumor anti-angiogenesis (3, 4) within the same

timeframe. Dynamic contrast-enhanced Doppler ultrasonogra-

phy has been successful in predicting the early tumor response

in isolated limb perfusion of limb sarcomas (5) within 1–7 days

after therapy delivery. However, the use of such imaging modal-

ities to monitor the response of tumors to cancer therapies can

be limited by either their cost (dynamic contrast-enhanced

magnetic resonance imaging, PET, CT, combined PET/CT)

or limited applicability (dynamic contrast-enhanced Doppler

ultrasonography). The ability to assess early tumor responsive-

ness to therapy within days after the start of treatment could

ultimately aid clinicians in making decisions to modify

therapy (e.g., choosing different radiation regimens, adding
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a radiosensitizer, or using different chemotherapy drugs that po-

tentially could result in more effective treatment, leading to im-

proved outcomes and sparing patients unnecessary side effects).

The ultrasonic scattering process in biologic tissues is pri-

marily affected by the size, acoustic impedance (Z ¼
ffiffiffiffiffiffiffiffi
r=k

p
,

where r is the density and k is the compressibility), and the

spatial distribution of tissue-scattering structures. Ultrasonic

tissue characterization techniques are based on the premise

that disease processes or therapies alter the physical character-

istics of tissue (i.e., compressibility, density, and scatterer

size), and these alterations cause observable changes in acous-

tic scattering properties. The characterization of tissue micro-

structures by examining the frequency-dependent backscatter

has been used to diagnose prostate cancer, ocular tumors, and

cardiac and liver abnormalities (6–8) and to differentiate be-

nign fibroadenomas from mammary carcinomas and sarcomas

(9). It has also provided good diagnostic accuracy in the detec-

tion and lesion localization of prostate cancer (10, 11).

The aim of cancer radiotherapy is to kill tumors by inducing

cell death, including apoptosis or mitotic arrest/catastrophe

(12). Currently, the standard methods for detecting cell death

are invasive and involve special staining. Previous studies

have indicated that high-frequency ultrasound (i.e., 10–60

MHz) is sensitive to apoptosis in vitro and in vivo (13). In pre-

vious studies, the backscatter intensity from apoptotic cells

has exhibited an #16-fold increase compared with viable

cells (13, 14). In addition, the spectral slope was observed

to increase significantly for apoptotic cells vs. viable cells

(14). For the range of ultrasonic frequencies used in these

studies of 10–60 MHz, the corresponding ultrasound wave-

lengths of 25–150 mm approach the size of cells and nuclei

(10–20 mm) and, hence, are more sensitive to changes in cel-

lular and nuclear structure than conventional ultrasound (15).

In this study, we investigated whether ultrasound imaging,

ultrasound integrated backscatter (UIB), and spectral slope

(SS), calculated from ultrasound power spectra, can be used

in the laboratory to monitor the responses of tumor cells ex-

posed to radiotherapy. This study represents the first evidence

of the use of spectral parameters to detect radiotherapy effects

in vitro, specifically differentiating between cells that die pre-

dominantly by mitotic arrest/catastrophe from cells that die

predominately by a mix of apoptosis and mitotic arrest.

Three different cell lines were used in this study: AML, FaDu,

and Hep-2. The AML cell line was used as a reference model

because the apoptotic response of this cell line to a chemothera-

peutic drug has been histologically and ultrasonically well-char-

acterized previously (13, 14). The head-and-neck cancer cell

lines (FaDu and Hep-2) were chosen because a primary treat-

ment modality for head-and-neck cancers is radiotherapy.

METHODS AND MATERIALS

Cell preparation
Acute myeloid leukemia cells (OCI-AML-5) (16) were grown

from frozen stock samples as described previously (17). The human

head-and-neck tumor cell lines, FaDu and Hep-2, were obtained

from the American Type Culture Collection (Manassas, VA).
Hep-2 was cultured in a-minimum essential media supplemented

with 0.1% gentamicin and 10% fetal bovine serum. FaDu was cul-

tured in Eagle’s minimum essential medium with 2 mM L-glutamine

and Earle’s balanced salt solution adjusted to contain 1.5 g/L sodium

bicarbonate, 1.0 mM sodium pyruvate, and 10% fetal bovine serum.

All cell lines were grown in a humidified atmosphere at 37�C, con-

taining 5% carbon dioxide.

The cell samples were irradiated using a small animal and cell

irradiator (Faxitron Cabinet X-ray System, Faxitron X-ray, Wheel-

ing, IL). This delivered 160-keV X-rays at a rate of 200 cGy/min

for doses of 2, 4, and 8 Gy. The structural changes that are charac-

teristic of apoptotic and mitotic response (i.e., increase in cell and

nuclei size, membrane ruffling, cytoplasm vacuolization, nuclei

fragmentation and condensation, and formation of apoptotic and mi-

totic bodies) were used as an indication of responses to radiotherapy.

These structural changes were observed in the AML cell culture for

all applied radiation doses and at 8 Gy for the FaDu and Hep-2 cell

lines at 48 h after exposure to radiotherapy. The cell samples were

ultrasonically imaged 48 h after exposure to radiotherapy because

keeping the treated cells >2 days in the culture would allow the sur-

viving cells to further divide, decreasing the chance to effectively

image the early radiation effects. The 8-Gy radiation dose is consis-

tent with the large palliative doses administrated in the clinic to

obtain appreciable rapid clinical effects.

Before ultrasound data acquisition, the cells were trypsinized

(Hep-2 and FaDu), washed in phosphate-buffered saline, and centri-

fuged at 1900g. Parallel samples consisting of untreated (control)

and treated cells were prepared by centrifugation in a custom-built

sample holder. The sample holder had three cylindrical holes of 8

mm � 7 mm (diameter � height). The treated and control samples

were prepared by centrifugation of cells in two separate wells. The

other well, containing phosphate-buffered saline, served as a calibra-

tion reference. The cell samples were independently prepared in

triplicate from different sets of cells.

Ultrasound data acquisition and analysis
A VS40B high-frequency ultrasound device (VisualSonics, Tor-

onto, ON, Canada) was used to image cell samples. A transducer

with a nominal center frequency of 20 MHz and a�6-dB bandwidth

of 12–30 MHz was used to collect the ultrasound data. The data were

collected within the transducer depth of field (3.12 mm) from five dif-

ferent planes containing 40–60 scan lines each and stored digitally at

a sampling rate of 500 MHz. Five regions of interest (ROIs) contain-

ing 15–25 independent scan lines separated by a distance of 250 mm

(the transducer beam width at the nominal center frequency) were

chosen to calculate the backscattered power spectra. These ROIs

were 1 mm in height, centered around the transducer focus.

Ultrasound scan lines from each bracketed line segment were mul-

tiplied by a Hamming weighting function to suppress the spectral

lobes, and the Fourier transform was computed. The squared magni-

tudes of the resultant spectra from all ROIs were averaged and

divided by the power spectrum computed from a flat quartz calibra-

tion target to calculate the normalized power spectra. This procedure

removed system and transducer transfer functions to provide a com-

mon reference for data collected using various transducers and sys-

tems (18). The normalized power spectra were compensated for

frequency-dependent attenuation according to Taggart et al. (17).

The resulting normalized power spectra were integrated over the

transducer�6-dB bandwidth to calculate the UIB. Linear regression

analysis was used to calculate the SS from the normalized backscatter

power. The SS is a putative indicator of effective scatterer size, and

a decrease in SS corresponds with an increase in effective scatterer



1238 I. J. Radiation Oncology d Biology d Physics Volume 72, Number 4, 2008
Table 1. ATS, SOS, UIB, average diameter � variance, and SS measured for all cell samples

Cell type
ATS � SE

(dB/mm/MHz) SOS � SE (m/s) UIB � SE (dB)
Cell size

(mm) � variance (mm2) SS � SE (dB/MHz)

AML control 0.054 � 0.002 1,530 � 2 �55.4 � 0.3 10.3 � 2.3 0.89 � 0.08
AML 2 Gy 0.063 � 0.005 1,501 � 6 �51.6 � 0.6 10.4 � 4.5 0.91 � 0.05
AML 4 Gy 0.060 � 0.007 1,516 � 5 �48.3 � 0.5 9.2 � 5.2 0.84 � 0.06
AML 8 Gy 0.055 � 0.008 1,514 � 3 �49.6 � 0.6 9.9 � 4.6 0.85 � 0.10
FaDu control 0.070 � 0.002 1,532 � 4 �50.5 � 0.7 16.6 � 7.5 0.53 � 0.07
FaDu 8 Gy 0.068 � 0.003 1,499 � 2 �46.3 � 0.8 19.9 � 19.1 0.34 � 0.08
Hep-2 control 0.060 � 0.007 1,540 � 7 �52.3 � 0.4 17.4 � 5.4 0.57 � 0.04
Hep-2 8 Gy 0.059 � 0.005 1,543 � 3 �45.9 � 0.6 18.0 � 14.1 0.44 � 0.07

Abbreviations: ATS = attenuation coefficient slope; SOS = speed of sound; UIB = ultrasound integrated backscatter; SS = spectral slope;
SE standard error of average ultrasound parameters.

Three cell samples were considered for each experimental condition.
size when properly corrected for attenuation, according to Lizzi et al.
(6). Additional details on the theoretical and signal analysis consid-

erations can be found in publications by Lizzi et al. (7, 19).

The speed of sound (SOS) and attenuation coefficient slope

(ATS) were obtained by repeating each of the measurements on

three different ROIs on the same cell sample. A time-of-flight

method (20) was used to calculate the SOS. The thickness of the

cell sample was calculated as D = SOS � t/2, where t is the differ-

ence in the mean times of arrival of reflections from the bottom of

the well containing the cell sample and the top of the cell sample.

The thickness of the cell sample was used to calculate the ATS as

a function of frequency using a broadband technique (20).

A detailed presentation of data collection and analysis of ATS and

SOS are described in a recent publication (17).

Statistical analysis
Statistical analysis was performed using GraphPad Prism (Graph-

Pad Software, San Diego, CA). A t test was applied to each combi-

nation of conditions, and p < 0.05 was considered significant. The

ultrasonic parameters calculated from all ultrasound scan lines for

one treatment condition, considered as one population, were

compared against the ultrasonic parameters computed from the

corresponding control sample for the FaDu and Hep-2 cell lines.

One-way analysis of variance was applied to test the changes in

the ultrasonic parameters calculated from all three treatment condi-

tions considered for the AML cell line. The Bonferroni correction

was applied to the probability value, and p < 0.0167 was considered

significant.
Cytology analysis, cell size, and morphology measurements
To investigate the morphology of cells at each experimental

condition, ultrasonically imaged samples were fixed for 24 h in

10% buffered formalin, embedded in paraffin, and processed as

histologic sections. Hematoxylin and eosin staining and phase con-

trast microscopy images were used to assess the general cell mor-

phology. The cell and nuclear fragment sizes for each experimental

condition were measured with a Multisizer3 Coulter Counter

(Beckman Coulter, Mississauga, ON, Canada) using a 100-mm ap-

erture that allowed for precise and reliable particle size measure-

ments in the 5–60-mm range. Flow cytometric analysis using

propidium iodine was performed to measure cell DNA content

using a FACS caliber (BD Biosciences, Mississauga, ON,

Canada), as described previously (21).

RESULTS

The values of ATS, SOS, UIB, cell size, and SS for all

viable and treated cell samples are presented in Table 1. No

statistically significant differences were observed between

the ATS and SOS values calculated for each cell line from

the viable and irradiated cell samples.

The UIB increased for all three cell lines (FaDu, Hep-2,

and AML) exposed to radiotherapy, by 3.8–7.1 dB (p <

0.001; Table 1). Figure 1 shows two representative ultra-

sound images of an untreated and treated Hep-2 cell sample

corresponding to the UIB values presented in Table 1.
Fig. 1. Representative ultrasound images of Hep-2 cell samples demonstrating increase in ultrasound backscatter, ob-
served as increase in image brightness (approximate fourfold increase) after radiation. Height of cell sample is �2 mm.
Smallest division on scale on lateral side of each pellet is 0.1 mm. Small triangle on right side of each cell sample represents
location of transducer focal point. The hyperechoic line across bottom of ultrasound image is bottom of sample holder.
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Fig. 2. Normalized power spectra and microscopy images before and after treatment for (A) AML, (B) FaDu, and (C)
Hep-2 cell samples. Scale bars in hematoxylin and eosin and phase microscopy slides represent 20 mm.
Spectral slope can be related to the size of the major scat-

tering structures in a sample (6, 22). In the present study, the

SS revealed different trends, depending on the changes in

the cell/nuclear sizes after different modalities of cell death.

The SS calculated for the AML cell samples did not change

significantly between the viable and treated samples or be-

tween the samples treated with different radiation doses

(Table 1 and Fig. 2A). The corresponding hematoxylin

and eosin image of the AML cells treated with radiotherapy

exhibited a mix of cell death: apoptosis with nuclear conden-

sation and fragmentation, and mitotic arrest with enlarged

cells (Fig. 2A). The SS calculated for the Hep-2 and FaDu

cell samples decreased with radiation by 20–40% (p <

0.05; Table 1 and Fig. 2B). Phase contrast microscopy im-

ages of the two head-and-neck cancer cell lines, FaDu and

Hep-2, exhibited the morphologic characteristics of only
mitotic arrest/catastrophe with enlarged cells and nuclei after

exposure to 8 Gy radiation (Figs. 2B,C). The decrease in the

SS can be interpreted as an increase in the average scatterer

size, consistent with the observed increase in cell/nuclear

sizes.

To identify the modalities of cell death after radiotherapy,

in addition to histologic examination, flow-cytometric mea-

surements of DNA content were performed. Because the nu-

cleus becomes fragmented during apoptosis, sub-G1 fractions

were identified as apoptotic cells. The sub-G1 peak can rep-

resent, in addition to apoptotic cells, mechanically damaged

cells and cell fragments resulting from advanced stages of

cell death (21, 23). The G2/M peak was identified as cells

in mitosis and mitotic arrest, and the peak with greater than

double DNA content (greater than in the G2/M fraction)

was identified as cells in mitotic catastrophe and polyploid
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Fig. 3. Flow-cytometric measurement of cellular DNA content. (A) AML cell samples demonstrating increase in apoptotic
and mitotic cell fractions illustrated by sub-G1 fraction (0.64%, 0 Gy; 6.16%, 2 Gy; 9.16%, 4 Gy; 17.05%, 8 Gy) and G2/M
fraction (10.69%, 0 Gy; 27.23%, 2 Gy; 36.39%, 4 Gy; 25.39%, 8 Gy). (B) FaDu and (C) Hep-2 demonstrating increase in
G2/M fraction (FaDu: 18.48%, 0 Gy and 32.81%, 8 Gy; Hep-2: 22.09%, 0 Gy and 37.16%, 8 Gy) and polyploid fraction
(FaDu: 1.15%, 0 Gy and 9.46%, 8 Gy; Hep-2: 1.61%, 0 Gy and 11.95%, 8 Gy) after radiotherapy, consistent with mitotic
arrest/catastrophe.
cells. Cells typically die by mitotic arrest/catastrophe after

they undergo up to four unsuccessful mitotic cycles, as de-

scribed by Tannock et al. (12). The analysis of the DNA con-

tent for the AML cell samples demonstrated a mix of cell

death by apoptosis, with a 25-fold maximal increase in the

sub-G1 fraction and a 3.5-fold maximal increase in the G2/M

cell fraction (Fig. 3A). For the head-and-neck cancer cell

lines, no sub-G1 fractions were detectable, but an approxi-

mately twofold increase in the mitotic cell fraction (G2/M)

and a six- to eightfold increase in the mitotic catastrophe

and polyploid cell fraction (Fig. 3B,C) was found.
Scatterer size can be a major determinant of the ultrasound

backscatter strength, (indicated in this study by UIB) and of

the ultrasound backscatter frequency dependence (indicated

in this study by SS). Measurements of cell size distributions

were performed to determine how the sequence of cell death

affected the cell sizes and to correlate these changes to the ul-

trasound parameters. Measurement of the cell sizes demon-

strated no significant changes in the average AML cell size

with treatment (Table 1); however, the cell size distributions

changed with exposure to different radiation doses. The cell

size distributions revealed an increase in the count of smaller
5 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0
AML viable cells
AML 2Gy
AML 4Gy
AML 8Gy

N
um

be
r o

f c
ou

nt
s

Cell diameter (um)
10 12 14 16 18 20 22 24 26 28 30 32 34

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f c
ou

nt
s

Cell Diameter (um)

Hep2 viable cells
Hep2 8Gy 48h 

10 12 14 16 18 20 22 24 26 28 30 32 34
0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f c
ou

nt
s

Cell diameter (um)

FaDu viable cells 
FaDu 8Gy48h

9876

A B C

Fig. 4. Histograms of cell size distributions for (A) AML, (B) FaDu, and (C) Hep-2 before and after radiotherapy, dem-
onstrating changes in cell size distributions depending on cell type and radiation dose. Histograms normalized to one by
dividing each count from distribution to maximal count.
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particles, consistent with apoptotic cells and nuclear frag-

ments, and an increase in the count of larger particles, consis-

tent with mitotically arrested cells (Fig. 4). An increase in the

count of particles with larger sizes was measured for FaDu

and Hep-2 cells, consistent with the cell death by mitotic

arrest/catastrophe exhibited by these cell lines (Fig. 4B,C).

In the present study, we also investigated the variance of

cell sizes (the squared standard deviation), because it can

considerably influence cell and nuclei spatial organization

in a sample (24, 25). The UIB measured from all cell samples

correlated well with the variance of cell sizes, with a Pearson

correlation coefficient of r = 0.80 and statistical significance

of p < 0.01 (Fig. 5). The goodness of fit of the linear regres-

sion was r2 = 0.64, suggesting that the increase in cell size

variance might have a contribution to the increase in ultra-

sound backscatter.

DISCUSSION

The present study has demonstrated the use of ultrasonic

spectral parameters to detect cell responses to radiotherapy

and to differentiate the cells that die predominantly by mi-

totic arrest/catastrophe from the cells that die predominately

by a mix of apoptosis and mitotic arrest. The changes in ul-

trasonic parameters were direct consequences of cell struc-

tural changes following the sequence of cell death and,

hence, provide a basis for characterizing tumor responses

to radiotherapy in preclinical mouse cancer models (26).

The SOS and ATS were used to correct the normalized

power spectra for frequency-dependent attenuation and pro-

vided an understanding of how attenuation and SOS can

change with radiotherapy. This constitutes essential infor-

mation for the application of this technique in vivo in mouse

cancer tumors grown from the same type of tumor cell lines

(26).

Ultrasonic parameters, including SS and UIB, have previ-

ously been used to characterize diseased tissue or tissue and

Fig. 5. Linear correlation between ultrasound integrated backscatter
and variance of cell sizes measured from all cell samples, viable and
exposed to radiotherapy. Curved lines indicate 95% confidence
bands of regression line representing boundaries of all possible
straight lines, including 95% interval of slopes and intercepts.
cell samples exposed to different therapeutic agents (6, 8, 10,

14, 17, 27). In the present study, the UIB increased in all cell

samples exposed to radiotherapy. The UIB depends on the

size, acoustic properties (density and compressibility), and

spatial arrangement of scatterers in a sample. Previous stud-

ies have demonstrated an increase in ultrasound backscatter

in vitro and in vivo for cell samples exposed to chemothera-

peutic drugs, photodynamic therapy (13, 14), and ischemic

injury (27). The mechanism behind this increase was broadly

linked to the cell and nuclear morphologic changes observed

histologically during cell death. The present study has con-

firmed these observations using three cell lines exposed to ra-

diotherapy that underwent different types of cell death.

Qualitative analysis of cell microscopy images, measure-

ments of cellular DNA content, and measurements of cell

size distributions demonstrated that, as expected, the nuclear

sizes decreased during cell death by apoptosis and increased

during mitotic arrest/catastrophe, followed by similar

changes in the cell sizes (Figs. 2–4). The changes in the

cell and nuclear sizes during the sequence of cell death re-

sulted in an increase in the variance of cell sizes by more

than twofold (Table 1). The increase in the variance in cell

sizes might have contributed to the UIB increase, as sug-

gested by the correlation between the UIB and the variance

in cell sizes (Fig. 5). Work in progress in our laboratory

(28) has indicated a good agreement between the changes

measured in the UIB with increasing variance in cell sizes

and the simulations of ultrasound scattering with increasing

randomization. Other contributions to the UIB increase can

be attributed to the changes in size and acoustic impedance

of the cells and nuclei during the sequence of cell death.

For example, all cell lines exhibited an increase in the count

of cells with larger sizes. This was more pronounced for the

FaDu cell line (Fig. 4). As another example, the nuclear con-

densation present in the AML cell line treated with radiother-

apy might result in changes in acoustic impedance.

The SS can be used putatively to characterize the size of

the major scattering structure in tissue, as demonstrated pre-

viously (7, 10, 22, 29, 30). Previous work by Kolios et al.
(14) demonstrated that the SS increased in the cell samples

that predominantly presented classic features of apoptosis,

including cell shrinkage and nuclear condensation and frag-

mentation. In contrast, in the present study, the SS decreased

in cell samples that predominantly underwent mitotic arrest/

catastrophe and did not change in the cell samples that under-

went a mix of apoptosis and mitotic arrest. We have indicated

that this detection is determined by the changes in cell and

nuclear sizes during different modalities of cell death. There-

fore, the SS can be used as an aid to differentiate the predom-

inant form of cell death in cell samples exposed to different

types of therapies.

Implications
The head-and-neck cancer models were chosen in this

study because a primary treatment modality for these types

of cancers is radiotherapy. Considering future applications

of the technique described in the present study, this type of
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tumor could be accessed in humans with endoscopic probes

working at 10–20 MHz (31). Ultrasound imaging enhanced

by ultrasonic spectral parameters could provide the benefit

of determining the tumor response early, within days after

treatment starts, allowing tumor imaging before and multiple

times during treatment. An early indicator of treatment re-

sponse would be of great value to tailor treatments to individ-

ual patients and is particularly promising for multistage

interventions or combination treatments.

Limitations
A penetration depth of 2–5 cm for 10–30-MHz ultrasound

allows the technique to be applicable to a variety of tumors

types such as skin cancers, certain cancers of the breast,

and cancers that can be reached with endoscopic probes

such as nasopharyngeal and gastrointestinal cancers. Studies

in progress in our laboratory are investigating the potential of

detecting similar effects with lower frequency ultrasound

down to 5 MHz that might enlarge the range of applications.
CONCLUSION

Ultrasound imaging (10–30 MHz) and quantitative ultra-

sonic methods were used to detect responses to radiotherapy

in vitro and differentiate between cells that die predominantly

by mitotic arrest/catastrophe from cells that die predomi-

nately by a mix of apoptosis and mitotic arrest. Experimental

evidence supports the basis for ultrasonic detection of radio-

therapy effects to be changes in size and potentially size var-

iance of cells and nuclei after apoptosis, mitotic arrest, and

mitotic catastrophe. The technique can be applied preclini-

cally in vivo on tumors grown subcutaneously in mice for ul-

trasonic characterization of tumor responses to radiotherapy

(26). The results indicate that these cell structural changes

have a strong influence on ultrasound backscatter and SS,

providing a framework for future experiments with the goal

of demonstrating the potential of rapidly and noninvasively

monitoring and differentiating the effects of radiotherapy

and other anticancer treatments using an ultrasound-based

approach.
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